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FOREWORD 

 

The Self Learning Material (SLM) is written with the aim of providing 

simple and organized study content to all the learners. The SLMs are 

prepared on the framework of being mutually cohesive, internally 

consistent and structured as per the university’s syllabi. It is a humble 

attempt to give glimpses of the various approaches and dimensions to the 

topic of study and to kindle the learner’s interest to the subject 

 

We have tried to put together information from various sources into this 

book that has been written in an engaging style with interesting and 

relevant examples. It introduces you to the insights of subject concepts 

and theories and presents them in a way that is easy to understand and 

comprehend.  

 

We always believe in continuous improvement and would periodically 

update the content in the very interest of the learners. It may be added 

that despite enormous efforts and coordination, there is every possibility 

for some omission or inadequacy in few areas or topics, which would 

definitely be rectified in future. 

We hope you enjoy learning from this book and the experience truly 

enrich your learning and help you to advance in your career and future 

endeavours. 
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BLOCK-1 FUNCTIONAL ANALYSIS 
 

First, we use Zorn’s lemma to prove there is always a basis for any 

vector space. It fills up a gap in elementary linear algebra where the 

proof was only given for finite dimensional vector spaces. The 

inadequacy of this notion of basis for infinite dimensional spaces 

motivates the introduction of analysis to the study of function spaces. 

Second, we discuss three basic inequalities, namely, Young’s, Holder’s, 

and Murkowski’s inequalities. We establish Young’s inequality by 

elementary means, use it to deduce Holder’s inequality, and in term use 

Holder’s inequality to prove Murkowski’s inequality. 

The fundamental Hahn-Banach theorem guarantees there are sufficiently 

many such functional for various purposes. 

The uniform boundedness principle and the open mapping theorem. 

Together with Hahn-Banach theorem, they form the cornerstone of the 

subject. Nevertheless, unlike the Hahn-Banach theorem, both theorems 

depend critically on completeness. Being the infinite dimensional 

counterpart of the eigenvalues of a matrix, spectra play an important role 

in analyzing bounded linear operators. 

In the next two sections we shall discuss the uniform boundedness 

principle and the open mapping theorem both due to Banach. The 

underlying idea of the proofs of these theorems is the Baire theorem for 

complete metric spaces. 
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UNIT 1: NORMED SPACES I 
 

STRUCTURE 

1.0 Objective 

1.1 Introduction 

1.2 Vector Spaces of Functions 

1.3 Zorn’s Lemma 

1.4 Existence Of Basis 

1.5 Three Inequalities 

1.6 Normed Vector Spaces 

1.7 Let’s Sum Up 

1.8 Keywords 

1.9 Questions For Review 

1.10 Suggested Readings 

1.11 Answers to Check Your Progress 

 

1.0 OBJECTIVE 
 

Understand the concept of Vector Spaces Of Functions Comprehend the 

concept of Zorn’s Lemma, Enumerate the Existence of Basis & Normed 

Vector Spaces, Understand the Three Inequalities 

 

1.1 INTRODUCTION 
 

Generally speaking, in functional analysis we study infinite dimensional 

vector spaces of functions and the linear operators between them by 

analytic methods. This chapter is of preparatory nature. First, we use 

Zorn’s lemma to prove there is always a basis for any vector space. It 

fills up a gap in elementary linear algebra where the proof was only 

given for finite dimensional vector spaces. The inadequacy of this notion 

of basis for infinite dimensional spaces motivates the introduction of 

analysis to the study of function spaces. Second, we discuss three basic 
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inequalities, namely, Young’s, H¨older’s, and Minkowski’s inequalities. 

We establish Young’s inequality by elementary means, use it to deduce 

H¨older’s inequality, and in term use H¨older’s inequality to prove 

Minkowski’s inequality. The latter will be used to introduce norms on 

some common vector spaces. As you will see, these spaces form our 

principal examples 

throughout this book. 

 

1.2 VECTOR SPACES OF FUNCTIONS 
 

Recall that a vector space is over a field  . Throughout this book it is 

always assumed this field is either the real field ℝ or the complex field ℂ. 

In the following   stands for ℝ or ℂ. It is true that many vector spaces 

can be viewed as vector spaces of functions. To describe this unified 

point of view, let S be a non-empty set and denote the collection of all 

functions from S to F by F(S). It is routine to check that F(S) forms a 

vector space over F under the obvious rules of addition and scalar 

multiplication for functions: For f, g ∈ F(S) and α ∈   , 

    (f + g)(p) ≡ f(p) + g(p), (α f)(p) ≡ α f(p). 

In fact, these algebraic operations are inherited from the target  . 

First, take S = {p1, · · · , pn} a set consisting of n many elements. Every 

function f ∈ F(S) is uniquely determined by its values at p1, · · · , pn, so f 

can be identified with the n-triple (f(p1), · · · , f(pn)). It is easy to see that 

F({p1, · · · , pn}) is linearly isomorphic to  n
. More precisely, the 

mapping f ↦ (f(p1), · · · , f(pn)) is a linear bijection between F({p1, · · · , 

pn}) and  n
. 

 

Second, take S = {p1, p2, · · · }. As above, any f ∈ F(S) can be identified 

with the sequence (f(p1), f(p2), f(p3) · · · ). The vector space F(        
 ) 

may be called the space of sequences over  . 

 

Finally, taking S = [0, 1], F([0, 1]) consists of all  -valued functions. 

The vector spaces we are going to encounter are mostly these spaces and 

their subspaces. 
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1.3 ZORN’S LEMMA 
 

In linear algebra, it was pointed out that every vector space has a basis no 

matter it is of finite or infinite dimension, but the proof was only given in 

the finite dimensional case. Here we provide a proof of the general case. 

The proof depends critically on Zorn’s lemma, an assertion equivalent to 

the axiom of choice. 

To formulate Zorn’s lemma, we need to consider a partial order on a set. 

A relation ≤ on a non-empty set X is called a partial order on X if it 

satisfies  

(PO1) x ≤ x, ∀x ∈ X; 

(PO2) x ≤ y and y ≤ x implies x = y. 

(PO3) x ≤ y, y ≤ z implies x ≤ z. 

 

The pair (X, ≤) is called a partially ordered set or a poset for short. A 

non-empty subset Y of X is called a chain or a totally ordered set if for 

any two y1, y2 ∈ Y , either y1 ≤ y2 or y2 ≤ y1 holds. In other words, 

every pair of elements in Y are related. An upper bound of a non-empty 

subset Y of X is an element u, which may or may not be in Y , such that y 

≤ u for all y ∈ Y . Finally, a maximal element of (X, ≤) is an element z in 

X such that z ≤ x implies z = x. 

 

Example. Let Us be a set and consider X = P(S), the power set of S. It is 

clear that the relation “set inclusion” A ⊂ B is a partial order on P(S). It 

has a unique maximal element given by S itself.  

Example. Let X = ℝ2
 and define x ≺ y if and only if x1 ≤ y1 and x2 ≤ y2. 

For instance, (−1, 5) ≺ (0, 8) but (−2, 3) and (35, −1) are unrelated. 

Then (X, ≺) forms a poset without any maximal 

element. 

 

1.3.1 Zorn’s Lemma. Let (X, ≤) be a poset. If every chain in X has an 

upper bound, then X has at least one maximal element. 

 

Although called a lemma by historical reason, Zorn’s lemma, a 

constituent in the Zermelo raenkel set theory, is an axiom in nature. It is 
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equivalent to the axiom of choice as well as the Hausdorff maximalist 

principle. You may look up Hewitt-Stromberg’s “Real and Abstract 

Analysis” for further information. 

 

1.4 EXISTENCE OF BASIS 
 

As a standard application of Zorn’s lemma, we show there is a basis in 

any vector space. To refresh your memory, let’s recall that a subset S in a 

vector space X is called a linearly independent set if any finite number of 

vectors in S are linearly independent. In other words, letting {x1, · · · , xn} 

be any subset of S, if α1x1 +· · · + αnxn = 0 for some scalars αi, i = 1, · · · 

, n, then αi = 0 for all i. On the other hand, given any subset S, denote all 

linear combinations of vectors from S by〈 〉. It is easy to check that hSi 

forms a subspace of X called the subspace spanned by S. A subset S is 

called a spanning set of X if 〈 〉 is X, and it is called a basis of X if it is 

also a linearly independent spanning set. When X admits a finite 

spanning set, it has a basis consisting of finitely many vectors. Moreover, 

all bases have the same number of vectors and we all this number the 

dimension of the space X. The space X is of infinite dimension if it does 

not have a finite spanning set. 

Theorem 14.1. Every non-zero vector space has a basis. This basis is 

sometimes called a Hamel basis. 

 

Proof. Let X be the set of all linearly independent subsets of a given 

vector space V . Since V is non-zero, X is a non-empty set. Clearly the 

set inclusion ⊂ makes it into a poset. To apply Zorn’s lemma, let’s verify 

that every chain in it has an upper bound. Let Y be a chain in X , 

consider the following subset of V 

 

 

 

We claim that (i) S ∈ X , that’s, S is a linearly independent set, (ii) C ⊂ S, 

∀C ∈ Y, that’s, S is an upper bound of Y. Since (ii) is obvious, it is 

sufficient to verify (i).  
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To this end, pick v1, · · · , vn ∈ S. By definition, we can find C1, · · · , Cn 

in Y such that v1 ∈ C1, · · · , vn ∈ Cn. As Y is a chain, C1, · · · , Cn satisfy 

Ci ⊂ Cj or Cj ⊂ Ci for any i, j. After  re-arranging the indices, one may 

assume C1 ⊂ C2 ⊂ · · · ⊂ Cn, and so {v1, · · · , vn} ⊂ Cn. Since Cn is a 

linearly independent set, {v1, · · · , vn} is linearly independent. This 

shows that S is a linearly independent set. 

After showing that every chain in X has an upper bound, we appeal to 

Zorn’s lemma to conclude 

that X has a maximal element B. We claim that B is a basis for V . For, 

first of all, B belonging to X means that B is a linearly independent set. 

To show that it spans V , we pick v ∈ V . Suppose v does not belong to 

〈 〉, so v is independent from all vectors in B. But then the set B e = B ∪ 

{v} is a linearly independent set which contains B as its proper subset, 

contradicting the maximalist of B. We conclude that 〈 〉 = V , so B forms 

a basis of V . 

Example. Consider the power set of ℝ3
 which is partially ordered by set 

inclusion. Let X be the 

subset of all linearly independent sets in ℝ3
. Then 

 

 1 ≡ {{(1, 0, 0)}, {(1, 0, 0), (1, 1, 0)}, {(1, 0, 0), (1, 1, 0), (0, 0, −3)}} 

and 

 2 ≡ {{(1, 3, 5), (2, 4, 6)}, {(1, 3, 5), (2, 4, 6), (1, 0, 0)}} are chains but 

 3≡ {{{(1, 0, 0)}, {(1, 0, 0), (0, 1, 0)}, {(1, 0, 0), (0, −2, 0), (0, 0, 1)}} is 

not a chain in X . 

 

For a finite dimensional vector space, it is relatively easy to find an 

explicit basis, and bases are used in many occasions such as in the 

determination of the dimension of the vector space and in the 

representation of a linear operator as a matrix. However, in contrast, the 

existence of a basis in infinite dimensional space is proved via a non-

constructive argument. It is not easy to write down a basis.  

For example, consider the space of sequences S ≡ {x = (x1, x2, · · · , xn · · 

· ) : xi ∈  }. Letting ej = (0, · · · , 1, · · · ) where “1” appears in the j-th 

place, it is tempting from the formula x = ∑   
   xjej to assert that 

     
 forms a basis for S. But, this is not true. Why? 
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 It is because infinite sums are not linear combinations. Indeed, one 

cannot talk about infinite sums in a vector space as there is no means to 

measure convergence. 

 

According to Theorem 1.3.1, however, there is a rather mysterious basis. 

In general, a non-explicit basis is difficult to work with, and thus lessens 

its importance in the study of infinite dimensional spaces. 

To proceed further, analytical structures will be added to vector spaces. 

Later, we will see that for a reasonably nice infinite dimensional vector 

space, any basis must consist of uncountable many vectors Suitable 

generalizations of this notion are needed. For an infinite dimensional 

normed space, one may introduce the so-called Schauder basis as a 

replacement. For a complete inner product spaces (a Hilbert space), an 

even more useful notion, a complete orthonormal set, will be much more 

useful. 

Mathematics is a deductive science. A limited number of axioms is 

needed to build up the tower of mathematics, and Zorn’s lemma is one of 

them.  

 

CHECK YOUR PROGRESS 

3.What is Vector space of a function 

 

 

 

2. Explain Existence of Basis 

 

 

 

1.5 THREE INEQUALITIES 
 

Now we come to Young’s, Holder’s and Murkowski’s inequalities. Two 

positive numbers p and q are conjugate if 1/p + 1/q = 1. Notice that they 
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must be greater than one and q approaches infinity as p approaches 1. In 

the following paragraphs q is always conjugate top. 

Proposition 1.5.1 (Young’s Inequality). For any a, b > 0 and p > 1, 

 

 

and equality holds if and only if a
p
 = b

q
. 

 

Proof. Consider the function 

 

 

 

From the sign of ϕ'(x) = x
p−1 

− 1 we see that ϕ is strictly decreasing on 

(0, 1) and strictly increasing on (1, ∞). It follows that x = 1 is the strict 

minimum of ϕ on (0, ∞). So, ϕ(x) ≥ ϕ(1) and equality holds if and only if 

x = 1. In other words 

 

 

 

 

Letting x = ab/b
q
, we get the Young’s inequality. Equality holds if and 

only if ab/b
q
 = 1, i.e., a

p
 = b

q
. 

Proposition 1.5.2 (Holders’ Inequality). For a, b ∈ ℝn
, p > 1, 

 

 

 

where 

  

 

Proof. The inequality clearly holds when a = (0, · · · , 0). We may assume 

a 6= (0, · · · , 0) in the following proof.  
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By Young’s inequality, for each ε > 0 and k, 

 

for any ε > 0. To have the best choice of ε, we minimize the right hand 

side of this inequality. Taking derivative of the right hand side of (1.1) as 

a function of ε, we obtain 

 

 

 

 

 

Is the minimum point. (Clearly this function has only one critical point 

and does not have any maximum.) Plugging this choice of ε into the 

inequality yields the Holder’s inequality after some manipulation. 

Proposition 1.5.3 (Murkowski’s Inequality). For a, b ∈ Fn and p ≥ 1, 

 

||a + b||p ≤ ||a||p + ||b||p. 

 

Proof. The inequality clearly holds when p = 1 or ka + bk = 0.  

 

In the following proof we may assume p > 1 and ka + bk > 0. For each k, 

 

|ak + bk|
p
 = |ak + bk|| ak + bk |

p−1
 

≤ |ak|| ak + bk |
p−1 

+ |bk|| ak + bk |
p−1

.    (1.2) 

 

Applying H¨older’s inequality to the two terms on right hand side of 

(1.2) separately (more precisely, to the pairs of real vectors (|a1|, · · · , 

|an|) and (|a1 + b1|p−1, · · · , |an + bn|p−1), and (|b1|, · · · , |bn|) and 



Notes 

14 

(|a1 + b1|p−1, · · · , |an + bn|p−1)), we have and Murkowski’s inequality 

follows. 

 

The last two inequalities allow the following generalization. 

1.5.4 Holder’s Inequality for Sequences. For any two sequences a and 

b in F, and p > 1, 

 

 

 

 

where now the summation in the sums on the right runs from 1 to ∞. 

Since the norms ||a||p and ||b||q are allowed to be zero or infinity, we 

adopt the convention 0 × ∞ = 0 in the above inequality. 

 

1.5.5 Murkowski’s Inequality for Sequences. For any two sequences a 

and b in F and p ≥ 1, 

 

||a + b||p ≤ ||a||p + ||b||p, 

 

where now the summation in the sums runs from 1 to ∞. 

 

1.5.6 Holders’ Inequality for Functions. For p > 1 and Riemann 

integrable functions f and g on [a, b], we have 

 

 

 

 

1.5.7 Murkowski’s Inequality for Functions. For p ≥ 1 and Riemann 

integral functions f and g on [a, b], we have 
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1.6 NORMED VECTOR SPACES 
 

Let (X, +, ·) be a vector space over . A norm on X is a function from X 

to [0, ∞) satisfying the 

following three properties: For all x, y ∈ X and α ∈ F, 

 

(N1) ||x|| ≥ 0 and “=” holds if and only if x = 0, 

(N2) ||x + y|| ≤ ||x|| + ||y||, 

(N3) ||αx|| = |α|||x||. 

 

The vector space with a norm, (X, +, ·, ||·||), or (X, ||·||), or even stripped 

to a single X when the context is clear, is called a normed vector space 

or simply a normed space. Here are some normed vector spaces. 

 

Example. ( n
, || · ||p), 1 ≤ p < ∞, where 

 

 

 

 

Clearly, (N1) and (N3) hold. According to the Murkowski’s inequality 

(N2) holds too. When p = 2 and  n
 = ℝn

 or ℂn
, the norm is called the 

Euclidean norm or the unitary norm. 

 

Example. ( n
,, || · ||∞) where 

 

 

 

is called the sup-norm. 

 

Example : Let  p
, 1 ≤ p < ∞, be the collection of all F-valued sequences 

x = (x1, x2, · · · ) satisfying 
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First of all, from the Murkowski’s inequality for sequences the sum of 

two sequences in  p
 belongs to  p

. 

With the other easily checked properties,  p
 forms a vector space. The 

function || · ||p, i.e. 

 

 

 

 

clearly satisfies (N1) and (N3). Moreover, (N2) also holds by 

Murkowski’s inequality for sequences. Hence it defines a norm on  p
. 

Example. Let  ∞
 be the collection of all F-valued bounded sequences. 

Define the sup-norm 

Clearly  ∞
  forms a normed vector space over F 

 

Example. Let C[a, b] be the vector space of all continuous functions on 

the interval [a, b]. For 

1 ≤ p < ∞, define 

 

By the Murkowski’s inequality for functions, one sees that (C[a, b], k · 

kp) forms a normed space under this norm. 

 

Example: Let B([a, b]) be the vector space of all bounded functions on 

[a, b]. The sup-norm 

 

 

 

defines a norm on B([a, b]). 

 

Example. In fact, let Fb(S) be the vector subspace of F (S) consisting of 

all bounded functions from S to F. The sub-norm can be defined on Fb(S) 

and these examples are special cases obtained by taking different sets S. 

Example. Any vector subspace of a normed vector space forms a 

normed vector space under the same norm. In this way we obtain many 
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many normed vector spaces. Here are some examples: 

The space of all convergent sequences, C, the space of all sequences 

which converges to 0, C', and the space of all sequences which have 

finitely many non-zero terms, C", are normed subspaces of  ∞
  under the 

sup-norm. The space of all continuous functions on [a, b], C[a, b], is an 

important normed subspace of B([a, b]). The spaces {f : f(a) = 0, f ∈ C[a, 

b]}, {f : f is differentiable, f ∈ C[a, b]} and {f : f is the restriction of a 

polynomial on [a, b]} are normed subspaces of C[a, b] under the sup-

norm. 

But the set {f : f(a) = 1, f ∈ C[a, b]} is not a normed space because it is 

not a subspace. 

To accommodate more applications, one needs to replace [a, b] by more 

general sets in the examples above. For any closed and bounded subset K 

in Rn, one may define C(K) to be the collection of all continuous 

functions in K. As any continuous function in a closed and bounded set 

must be bounded (with its maximum attained at some point), its sup-

norm is well-defined. Thus (C(K), || · ||∞) forms a normed space.  

On the other hand, let R be any rectangular box in Rn. We know that 

Riemann integration makes sense for bounded, continuous functions in 

R. Consequently, we may introduce the normed k · kp = (RR |f|p)1/p to 

make all bounded, continuous functions in R a normed space. However, 

this p-norm does not form a norm on the space of Riemann integrable 

functions. Which axiom of the norm is not satisfied? 

 

In addition to above example where new normed spaces are found by 

restricting to subspaces, there are two more general ways to obtain them. 

For any two given normed spaces (X, || · ||1) and (Y, || · ||2) the function 

||(x, y)|| = ||x||1 + ||y||2 defines a norm on the product space X × Y and 

thus makes X × Y the product normed space. On the other hand, to each 

subspace of a normed space one may form a corresponding quotient 

space and endow it the quotient norm.  

These examples of normed spaces will be used throughout this book. For 

simplicity the norm of 

the space will usually be suppressed. For instance,  n
 always stands for 

the normed space under the Euclidean or the unitary norm,   p
 and  ∞

 are 



Notes 

18 

always under the p-norms and sup-norm respectively and a single C(K) 

refers to the space of continuous functions on the closed, bounded set K 

under the sup-norm. 

CHECK YOUR PROGRESS 

3.State  Murkowski’s Inequality for Functions. 

 

 

 

4. What is Norm? State its properties 

 

 

 

1.7 LET’S SUM UP 
 

In linear algebra, it was pointed out that every vector space has a basis no 

matter it is of finite or infinite dimension. We studied the concept of 

Normed spaces, Existence of Basis, Normed vectors. We comprehended 

three inequalities. Each subspace of a normed space one may form a 

corresponding quotient space and endow it the quotient norm. 

 

1.8 KEYWORDS 
 

Vector Space- A vector space is a set V on which two operations + and 

· are defined, called vector addition and scalar multiplication. 

Inequality - In mathematics, an inequality is a relation which makes a 

non-equal comparison between two numbers or 

other mathematical expressions 

Bounded Function - In mathematics, a function f defined on some set 

X with real or complex values is called bounded if the set of its values 

is bounded. 
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1.9 QUESTION FOR REVIEW 
 

1. Find a relation which satisfies (PO1) and (PO2) but not (PO3), and 

one which satisfies (PO1) and 

(PO3) but not (PO2). 

2. Let V be a vector space. Two subspaces U and W form a direct sum of 

V if for every v ∈ V , there 

exist unique u ∈ U and w ∈ W such that v = u + w. Show that for every 

subspace U, there exists 

a subspace W so that U and W forms a direct sum of V . Suggestion: Try 

Zorn’s lemma. 

3. Let X × Y be the product space of two normed spaces X and Y . Show 

that it is also a normed 

space under the product norm ||(x, y)|| = ||x||X + ||y||Y 

4. Give an example to show that k · kp is not a norm on Fn when n ≥ 2 

and p ∈ (0, 1). Note: In fact, there are reverse Hӧlder’s and Minkowski’s 

inequalities when p ∈ (0, 1). 
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1.11 ANSWER TO CHECK YOUR 

PROGRESS 
 

1. Refer explanation -1.2  

2. Refer – 1.3 

3. Provide representation – 1.4.6 

4. Provide explanation -1.4 
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UNIT 2: NORMED SPACE: 

ANALYTICAL ASPECTS 
 

STRUCTURE 

2.0 Objective 

2.1 Introduction 

2.1 Normed Space As Metric Space 

2.2 Separability 

2.3 Completeness  

2.4 Let’s Sum Up 

2.5 Keywords 

2.6 Questions for review 

2.7 Suggested Readings 

2.8 Answers to Check your Progress 

 

2.0 OBJECTIVE 
 

Understand the Normed Space as Metric Space 

Enumerate the Separability 

Comprehend the concept of Completeness 

 

2.1 INTRODUCTION 
 

When a vector space is endowed with a norm, one can talk about the 

distance between two vectors and consequently it makes sense to talk 

about limit, convergence and continuity. The underlying structure is that 

of a metric space. We give a brief introduction to metric space in the first 

section and use it to discuss three analytical properties of a normed 

vector space, namely, separability, completeness and Bolzano-

Weierstrass property, in later sections. Emphasis is on how these 

properties are preserved, modified or lost when one passes from finite to 

infinite dimensions. Our discussion on metric spaces is minimal in order 

to avoid possible overlap with a course on point set topology.  
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2.2 NORMED SPACE AS METRIC SPACE 
 

Let M be a non-empty set. A function d : M × M 7→ [0, ∞) is called a 

metric on M if ∀ p, q, r ∈ M 

 

(D1) d(p, q) ≥ 0, and “=” holds if and only if p = q. 

(D2) d(p, q) = d(q, p). 

(D3) d(p, q) ≤ d(p, r) + d(r, q). 

 

The pair (M, d) is called a metric space. 

 

To be precise, we have 

• Let {pn} be a sequence in (M, d). We call p ∈ M the limit of {pn} if for 

any ε > 0, there exists n0 such that d(pn, p) < ε for all n ≥ n0. Write p = 

limn→∞ pn or simply pn → p.. 

• The sequence {pn} is called a Cauchy sequence if for any ε > 0, there 

exists n0 such that 

d(pn, pm) < ε, for all n, m ≥ n0. 

 

• Let f : (M, d) ↦ (N, ρ) where (N, ρ) is another metric space be a 

function and p0 ∈ M. f is continuous at p0 if f(p0) = lim n→∞ f(pn) 

whenever lim n→∞ pn = p. Alternatively, for any ε > 0, it is required that 

there exists δ > 0 such that ρ(f(p), f(p0)) < ε whenever d(p, pn) < δ. f is 

called a continuous function on M if it is continuous at every point. 

Very often it is more convenient to use the language of topology (open 

and closed sets) to describe these concepts. To introduce it lets denote 

the metric ball centered at p, {q ∈ M : d(q, p) < r}, by Br(p). A non-

empty subset G of M is called an open set if ∀p ∈ G, there exists a 

positive r (depending on p) such that Br(p) ⊂ G. We define the empty set 

to be an open set.  

 

Also the whole M is open because it contains every ball. It is easy to see 

that any metric ball BR(p0), is an open set. For, let p ∈ BR(p0), we claim 

that Br(p), r = R − d(p, p0), is contained inside BR(p0). This is a 
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consequence of the triangle inequality (D3): Let q ∈ Br(p), then d(q, p0) 

≤ d(q, p) + d(p, p0) < r + d(p, p0) = R, so q ∈ BR(p0). Roughly speaking, 

an open set is a set without boundary. A subset E is called a closed set if 

its complement M \ E is an open set. The empty set is a closed set as its 

complement is the whole space. By the same reason M is also closed. So 

the empty set and the whole space are both open and closed. 

 

Proposition 2.1.1 Let (M, d) be a metric space. Then the union of open 

sets and the intersection of finitely many open sets are open. The 

intersection of closed sets and the union of finitely many closed sets are 

closed. 

Proof. That any countable or uncountable open sets still form an open set 

comes from definition. As for finite intersections, let G =      
  Gk 

where Gk is open. For x ∈ G ⊂ Gk, we can find a metric ball Brk(x) ⊂ Gk 

for each k since Gk is open. It follows that the ball Br(x), r = min{r1, r2, · 

· · , rn} is contained in G, so G is open. 

The assertions on closed sets come from taking complements of the 

assertions on open sets. Notice that infinite intersection of open sets may 

not be open. Let us consider the open intervals  In = (−1/n, 1 + 1/n), n ∈ 

  in ℝ under the Euclidean metric. Then   In = [0, 1] which is not open. 

Similarly, let {a1, a2, a3, · · · , } be an enumeration of all rational 

numbers and set Fn = {a1, a2, · · · , an}. Then each Fn is closed, but 

⋃  Fn is the set of all rational numbers which is clearly not closed in ℝ. 

To have a better picture about the closed set we introduce the notion of a 

the limit point of a set. 

We call a point p ∈ M a limit point of a set E if for all r > 0, Br(x) \ {x} 

  E ≠ ∅. The limit point is related to a set, but the limit, although it is 

also a point, is related to a sequence. They are not the same. 

For example, consider the sequence {1, 1 2, 1 3, 1 4, · · · }, its limit is 

clearly 0. If we regard {1, 1 2, 1 3, 1 4, · · · } as a set, 0 is its unique limit 

point. However, for the sequence {0, 2, 1, 1, 1, · · · }, the limit is 1 but as 

a set it has no limit point. 

Proposition 2.2.2. A non-empty set E is closed if and only if it contains 

all its limit points. 
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Proof. Let E be a closed set. By definition M \ E is open. If p ∈ M \ E, 

there exists r such that 

Br(p) ⊂ M \ E, ie, Br(p) T E = ∅. It follows that p cannot be a limit point 

of E. This shows that any limit point of E must belong to E. 

Conversely, we need to show M \ E is open. Since E already contains all 

limit points, any point 

p ∈ M \ E cannot be a limit point of E. Therefore, there is an r such that 

Br(p) T E = ∅, but that 

means Br(p) ⊂ M \ E, so M \ E is open. 

The closure of E, denoted by  ̅, is defined to be the union of E and its 

limit points. By Proposition 2.1.1 it is easily shown that  ̅,  is the 

smallest closed set containing E, that is,  ̅⊂ F whenever F is a closed set 

containing E. 

In terms of the language of open-closed sets (or topology), a sequence 

{xn} → x can be expressed as, for each open set G containing x, there 

exists an n0 such that xn ∈ G for all n ≥ n0.  

For f : (M, d) ↦ (N, ρ) where (N, ρ) is another metric space. In terms of 

topology, we have the following characterization of continuity: 

 

Proposition 2.2.3. f : (M, d) ↦ (N, ρ) is continuous if and only if f 
−1

(G) 

is open for any open G in N. 

Proof. Assume on the contrary that there is an open set G in N whose 

pre-image is not open. We can find some p0 ∈ f 
−1

(G) and pn ∈ M \ f 

−1(G) with {pn} → p0. By continuity, {f(pn)} → f(p0). As G is open, 

there exists some n0 such that f(pn) ∈ G for all n ≥ n0. But this means 

that f 
−1

(G) contains pn for all n ≥ n0, contradiction holds. We conclude 

that f −1(G) must be open when G is open. 

On the other hand, suppose f is not continuous, then there exists {pn} → 

p0 in M but {f(pn)} does 

not converge to f(p0). Then there exists ρ > 0 and a subsequence {f(pnj 

)}, f(pnj ) ∈ / Bρ(f(p0)), ∀nj. As Bρ(f(p0)) is open, f −1(Bρ(f(p0))) is open 

in M, so there exists n0 such that pn ∈ f −1(Bρ(f(p0))). 

But then f(pn) ∈ Bρ(f(po)) for all n ≥ n0, contradiction holds. Let E be 

any nonempty subset of (M, d). Then it is clear that (E, d) forms a metric 

space. It is called a metric subspace or simply a subspace. As we will 
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see, the subspaces formed by closed subsets are particularly important 

since they inherit many properties of M. 

Now, let us return to normed spaces. Let (X, k · k) be a normed space. 

Define d(x, y) = ||x – y||. 

Using (N1)-(N3), it is easy to verify (D1)-(D3) hold for d, so (X, d) 

becomes a metric space. This metric is called the induced metric of the 

norm || · ||. Of course, there are many metrics which are not induced by 

norms. But in functional analysis most metrics are induced in this way. 

¿From now on whenever we have a normed space, we can talk about 

convergence and continuity implicitly referring to this metric. 

The following statements show that the norm and the algebraic 

operations on the vector spaces interact nicely with the metric. 

 

Proposition 2.2.4. Let (X, || · || ) be a normed space. Then 

(a) The norm || · || is a continuous function from X to [0, ∞); 

(b) Addition, as considered as a map X × X 7→ X, and scalar 

multiplication, a map F × X 7→ X, are continuous in X × X and F × X 

respectively. 

 

Proof. (a) pn → p means d(pn, p) → 0. But then  

||pn – p|| = d(pn, p) → 0,  |    | – |   |  ≤ ||pn – p|| → 0. 

(b) We need to show pn → p and qn → q implies pn + qn → p + q. This is 

clear from d(pn + qn, p + q) = ||(pn + qn) − (p + q)|| ≤ ||pn– p|| + ||qn – q|| 

= d(pn, p) + d(qn, q). 

 

For scalar multiplication, need to show αn → α and pn → p implies αnpn 

→ αp. By (a), we have 

||pn|| → ||p||. Hence for ε = 1, there exists some n0 such that |||pn|| – 

||p||| < 1, or ||pn|| ≤ 1 + ||p||, for all n ≥ n0. 

as n → ∞. 

As an interesting application of the continuity of norm, we study the 
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equivalence problem for norms. Consider two norms defined on the same 

space (X, || · ||1) and (X, || · ||2). We call ||· ||2 is  

stronger than || · ||1 if there exists C > 0 such that 

 

      || · ||1 ≤ C||x||2, ∀x ∈ X. 

In particular, it means xn → x in || · ||2  implies xn → x in k · k1. Two 

norms are equivalent if || · ||1 is stronger than k · k2 and k · k2 is stronger 

than k · k1. In other words, there exists C1, C2 > 0 such that 

 

     C1||x||2 ≤ ||x||1 ≤ C2||x||2, ∀x ∈ X. 

Example: On  n
 consider the p-metric dp(x, y) = ||x – y||p induced from 

the p-norm (1 ≤ p ≤ ∞). 

Theorem 2.2.5. Any two norms on a finite dimensional space are 

equivalent. 

Proof. In the following proof we assume the space is over ℝ. The same 

arguments work for spaces over ℂ. 

 

Step 1: Take X = ℝn
 first. It suffices to show that any norm on ℝn

 is 

equivalent to the Euclidean norm. 

Let || · || be a norm on ℝn
. For x = ∑     , recalling that ||x||2 =  

√∑      , we have 

 

 

 

where C = (∑       
  

 )
1/2

. This shows that || · ||2 is stronger than || · ||. To 

establish the other inequality, letting ϕ(x) = || x||, from the triangle 

inequality |ϕ(x) − ϕ(y)| ≤ ||x – y|| ≤ C||x – y||2   is a continuous function 

with respect to the Euclidean norm.  

Consider 

     

 

As the function ϕ is positive on the unit sphere of || · ||2, α is a non-

negative number. The second inequality will come out easily if α is 

positive. To see this we observe that for every nonzero x ∈ ℝn
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To show that α is positive, we use the fact that every continuous function 

on a closed and bounded subset of ℝn
 must attain its minimum. Applying 

it to   and the unit sphere {||x||2 = 1}, the infimum α is attained at some 

point x0 and so in particular α =   (x0) > 0. 

 

Step 2: For any n dimensional space X, fix a basis {x1, x2, · · · , xn}. For 

any x ∈ X, we have a unique representation     ∑     
 
   . The map x 

7→ (α1, · · · , αn) is a linear isomorphism from X to ℝn
. Any norm || · 

||on X induces a norm        ̃ on ℝn
 by  

 

  

 

Let || · ||1 and || · ||2 be two norms on X and let        ̃1and        ̃2be the 

corresponding norms on ℝn
. From Step 1, there exist C1, C2 > 0 such 

that 

 

 

 

Example: Consider the norms || · ||∞ and || · ||1 on C[a, b]. On one hand, 

from the obvious estimate 

 

 

 

we see that || · ||∞ is stronger than || · ||1. But they are not equivalent. It is 

easy to find a sequence of functions {fn} in C[a, b] which satisfies ||fn||∞ 

= 1 but ||fn||1 → 0. Consequently, it is impossible to find a constant C 

such that ||fk||∞ ≤ C||fk||1  for all f. In other words, ||· ||1 cannot be 

stronger than || · ||∞ 
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2.3 SEPARABILITY 
 

There are some important and basic properties of the space of all real 

numbers which we would like to study in a general normed space. They 

are 

 

• Separability 

• Completeness 

• Bolzano-Weierstrass property. 

 

As we all know, the rational numbers are dense in the space of all real 

numbers. The notion of a dense set makes perfect sense in a metric 

space. A subset E of (M, d) is a dense set if its closure is the whole M, or 

equivalently, for every p ∈ M, there exists {pn} in E, pn → p. A metric 

space is called separable if it has a countable dense subset. 

Thus R is separable because it contains the countable dense subset Q. 

The following two results show that there are many separable normed 

spaces. 

 

Proposition 2.3.1. The following normed spaces are separable: 

 

(a) (Fn, k · kp) (1 ≤ p ≤ ∞), 

(b) `p (1 ≤ p < ∞), 

(c) (C[a, b], k · kp) (1 ≤ p ≤ ∞). 

 

Proof. We only prove (c) and leave (a) and (b) to you. For any 

continuous, real-valued f, given any ε > 0, by Weierstrass approximation 

theorem there exists a polynomial p such that ||f – p||∞ < ε. 

 

The coefficients of p are real numbers in general, but we can 

approximate them by rational numbers, so without loss of generality we 

may assume its coefficients are rational. The set  E = {p ∈ C[a, b] : p is a 

polynomial with rational coefficients} forms a countable, dense subset of 

(C[a, b], || · ||∞). 

For any finite p, we observe that 
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As for every f, there exists pn ∈ E, ||pn – f||∞ → 0, we also have ||pn – f||p 

→ 0, so E is also dense in (C[a, b], || · ||p). 

When the function is complex-valued, simply apply the above result to 

its real and imaginary parts. 

Proposition 2.3.2. Any subset of a separable metric space is again 

separable. 

 

Proof. Let Y ⊂ X and E a countable, dense subset of X. Write E = 

       
 .For each m, B1/m(pk) ∩ Y may or may not be empty. Pick a point 

pm,k if it is not empty. The collection of all these pm,k points forms a 

countable subset S of Y . We claim that it is dense in Y . For, any p ∈ Y , 

and m > 0, there exists pk ∈ B1/m(p), pk ∈ E by assumption. But then p ∈ 

B 1/m(pk) which means B 1/m (pk) ∩ Y ≠  . Then we have pm,k ∈ B 1/m(pk) 

and so d(p, pm,k) ≤ d(p, pk) + d(pk, pm,k) < 2/m. 

Now we give an example of a non-separable space. 

 

Proposition 2.3.3.    is not separable. 

 

Proof. Consider the subset F of     consisting of all sequences of the 

form (a1, a2, a3, · · · ) where ak = 1 or 0. In view of Proposition 2.2.2, it 

suffices to show that F is not separable. First of all, it is an uncountable 

set as easily seen from the correspondence  

(a1, a2, a3, · · · ) ↔ 0.a1a2a3 · · · in binary representation of a real 

number 

 

 which maps F onto [0, 1].  

For each x, y ∈ F , we have  

 

d(x, y) = ||x – y||∞ = supk |xk − yk| = 1.  

It follows that the balls B1/2(x), x ∈ F, are mutually disjoint. Let E be a 

dense set in F . By definition there exists some px ∈ B1/2(x) ∩ E. Since 
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these balls are disjoint, all px are distinct, so {px} forms an uncountable 

subset of E. Thus E is also uncountable. We have shown that there are no 

countable dense subsets in F , that is, F is not separable. 

CHECK YOUR PROGRESS 

1.Define Dense set & separable 

 

 

 

2. Prove -    is not separable 

 

 

 

2.4 COMPLETENESS 
 

A metric space (M, d) is complete if every Cauchy sequence converges. 

As we all know, R is a complete metric space. 

 

Proposition 2.4.1. The following spaces are complete: 

 

(a) ( n
, ||· ||p) (1 ≤ p ≤ ∞), 

(b)  p
 (1 ≤ p ≤ ∞), 

(c) (C[a, b], || · ||∞). 

 

Proof. (a) Let {pk} be a Cauchy sequence in  n
. For p

k
 = (   

 , · · · ,    
 ), 

from  

 

  

 

we see that {   
 } is a Cauchy sequence in F for each j = 1, 2, · · · , n. By 

the completeness of F there exists pj such that    
 → pj as k → ∞ for each 

j. Given ε > 0, there exists k0 such that 

 

     |   
 − pj| ≤ ε,   ∀k ≥ k0. 
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Summing up over j, ||p
k 
– p||p < n

1/p 
maxj |pk j − pj| < n

1/p 
ε, ∀k ≥ k0, 

which shows that p
k
 → p ≡ (p1, · · · , pn). We leave the proofs of (b) and 

(c) to the reader. Note that (c) was a theorem on uniform convergence in 

elementary analysis. 

 

But C[a, b] is not complete in the L
p
-norm (1 ≤ p < ∞). To find a 

divergent Cauchy sequence 

we let 

 

 

 

 

 

 

It is easy to see that ||ϕn – ϕ||p → 0.  

 

Therefore, 

 

as n, m → ∞, that is, {fn} is a Cauchy sequence in p-norm. To show that 

it does not converge to a continuous function let’s assume on the 

contrary it converges to some continuous f. From as n → ∞, we see that f 

is identical to ϕ on [−1, 0] since both functions are continuous on [−1, 

0]. In particular, f(0) = 1, so by continuity f > 0 on [0, δ] for some 

positive δ. However, since f and ϕ are continuous on [δ, 1] by a similar 

argument as above f is identical to ϕ on [δ, 1], but then g(δ) = ϕ(δ) = 

0,contradiction holds. 

Fortunately, one can make any metric space complete by putting in ideal 

points. In general, a map f : (M, d) −→ (N, ρ) is called a metric 

preserving map if ρ(f(x), f(y)) = d(x, y) for all x, y in M. 

Note that a metric preserving map is necessarily injective. In some texts 

the name an isometric is used instead of a metric preserving map. We 

prefer to use the former and reserve the latter for a metric preserving and 

subjective map.  
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A complete metric space ( ̃  ̃) is called the completion of a metric 

space (M, d) if there exists an metric preserving map Φ of M into  ̃ such 

that Φ(M) is dense in  ̃. 

 

Theorem 2.4.2. Every metric space has a completion. 

Proof. Let   be the collection of all Cauchy sequences in (M, d). We 

introduce a relation ∿ on C by x ∿ y if and only if d(xn, yn) → 0 as n → 

∞. It is routine to verify that ∿ is an equivalence relation on C . Let M f = 

C / ∿ and define a map:  ̃ ×  ̃ ↦ [0, ∞) by 

 

 

 

where x = (x1, x2, x3, · · · ) and y = (y1, y2, y3, · · · ) are respective 

representatives of x e and y e. We note that the limit in the definition 

always exists: For 

    d(xn, yn) ≤ d(xn, xm) + d(xm, ym) + d(ym, yn) 

and, after switching m and n, 

 

   |d(xn, yn) − d(xm, ym)| ≤ d(xn, xm) + d(ym, yn). 

 

As x and y are Cauchy sequences, d(xn, xm) and d(ym, yn) → 0 as n, m 

→ ∞, so {d(xn, yn)} is a Cauchy sequence of real numbers. 

Step 1. Well-definedness of   ̃. To show that   ̃( ̃,  ̃) is independent of 

their representatives let x ∿ x' and y ∿ y'. We have 

 

 

 After switching x and x0, and y and y0, 

 

   

  

As x ∿ x'and y ∿ y', the right hand side of this inequality tends to 0 as n 

→ ∞. Hence lim n→∞ d(xn, yn) = lim n→∞ d(xn', yn'). 

 

Step 2.  ̃ is a metric. This is straightforward and is left as an exercise. 



Notes 

33 

 

Step 3. Φ is metric preserving and has a dense image in  ̃. More 

precisely, we need to show that there is a map Φ : M ↦  ̃ so that 

 ̃ (Φ(x), Φ(y)) = d(x, y) and Φ(M) is dense in  ̃. 

Given any x in M, the “constant sequence” (x, x, x, · · · ) is clearly a 

Cauchy sequence. Let  ̃ be its equivalence class in   . Then Φx =  ̃ e 

defines a map from M to  ̃. Clearly 

 

 

 

since xn = x and yn = y for all n, so Φ is metric preserving and it is 

injective in particular. To show that Φ(M) is dense in  ̃ we observe that 

any x e in M f is represented by a Cauchy sequence x = (x1, x2, x3, · · · ). 

Consider the constant sequence x
n
 = (xn, xn, xn, · · · ) ∈ Φ(M). We have 

 

 

 

Given ε > 0, there exists n' such that d(xm, xn) < ε/2 for all m, n ≥ n'. 

Hence   ̃(  ̃,  ̃n) = lim m→∞ d(xm, xn) < ε for n ≥ n'. That is  ̃n
 →   ̃as n → 

∞, so Φ(M) is dense in M. 

Step 4.   ̃is a complete metric on  ̃. Let {x en} be a Cauchy sequence in 

 ̃. As Φ(M) is dense in  ̃, for each n we can find a   ̃ 
in Φ(M) such that 

 

 

 

So {  ̃ 
} is Cauchy in   ̃. Let yn be the point in M so that y

n
 = (yn, yn, yn, · 

· · ) represents   ̃. Since Φ is metric preserving and {  ̃ 
} is Cauchy in 

  ̃, {yn} is a Cauchy sequence in M. Let (y1, y2, y3, · · · ) ∈ y e in  ̃.. We 

claim that  ̃. = limn→∞   ̃. in  ̃. For, we have 

 

 

 

 

 

as n → ∞. 
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The idea of this proof is due to Cantor, who used equivalence classes of 

Cauchy sequences of rational numbers to construct real numbers. 

Another popular approach for the real number system is by “Dedekind 

cut”.  

The uniqueness of the completion could be formulated as follows. Let Ψi 

: (M, d) → (Mi, di), i = 1, 2, be two metric preserving maps with dense 

images. Then the map Ψ2Ψ− 1 1 : Ψ1(M1) → M2 can be extended to be 

an isometry between M1 and M2.  

CHECK YOUR PROGRESS 

3. Explain Completness 

 

 

 

4. Explain - Every metric space has a completion. 

 

 

 

2.5 LET’S SUM UP 
 

When a given metric space is induced from a normed space, it is 

naturally to ask it is possible to make the completion into a normed space 

so that the complete metric is induced by the norm on the completion.  

 

2.6 KEYWORDS 
 

Relation: A relation is a relationship between sets of values. In math, 

the relation is between the x-values and y-values of ordered pairs. The 

set of all x-values is called the domain, and the set of all y-values is 

called the range. 

Convergence, in mathematics, property (exhibited by certain infinite 

series and functions) of approaching a limit more and more closely as an 
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argument (variable) of the function increases or decreases or as the 

number of terms of the series increases 

Completeness- every nonempty set that has an upper bound has a 

smallest such bound, a property not possessed by the rational numbers. 

 

2.7 QUESTION FOR REVIEW 
 

1. Let p ∈ M. Show that f is continuous at p if and only if for every open 

set G in N containing f(p), there exists an open set U in M containing p 

such that U ⊂ f 
−1

(G). 

2. Show that f is continuous in M if and only if for every closed set F in 

N, f 
−1

(F ) is a closed set in M. 

3. Show that in a normed space the closed metric ball with radius R 

centered at x, {y: d(y, x) ≤ R}, 

is the closure of the open metric ball BR(x). 

4.  Show that any finite dimensional subspace of a normed space is 

closed. Can you find a subspace which is not closed, say, in  1
? How 

about in C[0, 1]? 
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2.9 ANSWER TO CHECK YOUR 

PROGRESS 
 

1. Refer explanation -2.2  

2. Provide proof – 2.2.3 

3. Provide explanation– 2.3 & statement of theorem & proof -- 2.3.1 

4. Provide proof -2.3.2 
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UNIT 3: NORMED SPACE: 

ANALYTICAL ASPECTS II 
 

STRUCTURE 

3.0 Objective 

3.1 Introduction 

3.2 Completeness Theorem 

3.3 Sequential Compactness 

3.4 Arzela-Ascoli Theorem 

3.5 Let’s Sum Up 

3.6 Keywords 

3.7 Questions For Review 

3.8 Suggested Readings 

3.9 Answers To Check Your Progress 

 

3.0 OBJECTIVE 
 

Understand the concept of Uniform Boundedness Principle 

Comprehend Open Mapping Theorem 

Enumerate the concept of Spectrum 

3.1 INTRODUCTION 
 

In mathematics, a normed vector space is a vector space over 

the real or complex numbers, on which a norm is defined. A norm is the 

formalization and the generalization to real vector spaces of the intuitive 

notion of "length" in the real world.  

 

3.2 COMPLETENESS THEOREM 
 

Theorem 3.1.1. Let (X, k · k) be a normed space and  ̃ its completion 

under the induced metric of X. There is a unique normed space structure 
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on  ̃ so that the quotient map x ↦  ̃ becomes linear and norm-

preserving. Moreover, the metric induced by this norm  ̃ is identical to 

the completion metric. 

Proof. We only give the outline of the proof  

Step 1. Let Φ : X →  ̃ be the quotient map. As Φ(X) is dense in  ̃, for 

any  ̃,  ̃ in  ̃, we can find sequences {  ̃}, {  ̃} converging to  ̃,  ̃ 

respectively. We define an addition and a scalar multiplication on  ̃ by 

 

 

 

 

 

where xn and yn are representatives of x f n and y f n respectively. You 

need to establish three things.  

First, these operations are well-defined, that’s, they are independent of 

the representatives.  

Second, they make  ̃ into a vector space.  

Third, the map Φ is linear from X to  ̃. (In fact, this follows immediately 

from the definitions.) 

 

Step 2. Introduce a map on  ̃ by 

 

     || ̃ || ≡  ̃ ( ̃,0). 

 

Then verify the following three facts:  

First, translational invariance:  ̃ ( ̃ +  ̃,  ̃) =  ̃ ( ̃, 0) for all  ̃and  ̃.  

Second, use translational invariance to show that this map really defines 

a norm on  ̃.  

Third, show that the metric induced by this norm coincides with the 

completion metric. This in fact follows from the definition of the norm. 

Step 3. Show that if there is another normed space structure on  ̃ so that 

the quotient map Φ becomes linear and norm-preserving, then this 

normed space structure is identical to the one given by Steps 1 and 2. 

Essentially this follows from the fact that Φ(X) is dense in  ̃. 

 



Notes 

39 

As an immediate application of these results, we let L
p
(a, b) be the 

completion of C[a, b] under the L
p
-norm. We shall call an element in 

Lp(a, b) an Lp-function, although it makes sense only when the element 

is really in C[a, b]. Such terminology is based on another construction in 

real analysis where we really identify L
p
(a, b) as the function space 

consisting of Lp-integrable functions. We do not need this fact in this 

course. 

A complete normed space is called a Banach space. Banach space is one 

of the fundamental concepts in functional analysis. Now we know that 

even a space is not complete, we can make it into a Banach space. The 

following nice properties of Banach spaces hold: 

 

• Any closed subspace of a Banach space is a Banach space. 

• The product space of two Banach spaces is a Banach space under the 

product norm. 

• For any closed subspace Z of a Banach space X, the quotient space X/Z 

is a Banach space under 

the quotient norm. 

 

We have shown that the spaces  n,  p
(1 ≤ p ≤ ∞), C[a, b] and L

p
[a, b], p 

∈ [1, ∞), are Banach spaces. In fact, for any metric space X, the space 

Cb(X) = {f : f is bounded and continuous in X} 

forms a Banach space under the sup-norm. For any measure space (X, µ), 

the space Lp(X, µ) = {f : f is L
p
-integrable} forms a Banach space under 

the L
p
-norm. Finally, without requiring any topology or integrability on 

the functions, the space L∞(X) consisting of all bounded functions in a 

nonempty set X is a Banach space under the sup-norm. 

So far we have encountered three types of mathematical structure, 

namely, those of a vector space, a metric space and a normed space. How 

do we identify two spaces from the same structure? Well, first of all, we 

view two vector spaces the same if there exists a bijective linear map 

between them. A bijective linear map is also called a linear isomorphism. 

Next, two metric spaces are the same if there exists a metric preserving 

bijective map, that is, an isometry, from one to the other. Finally, two 
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normed spaces are the same if there exists a norm-preserving linear 

isomorphism from one to the other. 

 

3.3 SEQUENTIAL COMPACTNESS 
 

In the space of real numbers, any bounded sequence has a convergent 

subsequence. This property is called the Bolzano-Weierstrass property. 

In a general setting, it is more convenient to put this concept in another 

way. Let E be a subset of the metric space (M, d). E is called 

sequentially compact if every sequence in E enjoys the Bolzano-

Weierstrass property, that is, it contains a convergent subsequence, in E. 

Any sequentially compact set is necessarily a closed set. It is clear that 

the Bolzano-Weierstrass property essentially refers to the fact that the 

interval [a, b] is sequentially compact in ℝ. The same as in the case of R, 

one can show that every closed and bounded set in ℝn
 is sequentially 

compact. Surprisingly, this property is a characterization of finite 

dimensionality. 

Theorem 3.3.1. Any closed ball in a normed space is sequentially 

compact if and only if the space is of finite dimension. 

 

Lemma 3.2.2. Let Y be any proper finite dimensional subspace of the 

normed space (X, k · k). Then for any x ∈ X \ Y , there exists y0 ∈ Y such 

that 

 

 

 

is realized at y'. 

The distance d is positive because Y is closed due to finite dimensionality 

and x stays outside Y . 

Proof. Let {yk} be a minimizing sequence of the distance, that is, d = 

limk→∞ ||x – yk||. We may assume ||x – yk|| ≤ d + 1, for all k.  

Then 

  ||yk|| ≤ ||x|| + ||yk – x|| ≤ ||x|| + d + 1 

 

which means that {yk} is a bounded sequence in Y . Since Y is finite 
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dimensional, it is closed and Bolzano-Weierstrass property holds in it, 

there exists a subsequence {ynj } converging to some y0 in Y . 

We have d = lim nj→∞ ||x − ynj || = ||x − y0||, hence y' realizes the 

distance between x and Y . 

 

Proof of Theorem 3.2.1 It suffices to show that the closed unit ball {x ∈ 

X : ||x||≤ 1} is not sequentially compact when X is of infinite dimension. 

Let {x1, x2, x3, · · · } be a sequence of linearly independent vectors in X. 

We are going to construct a sequence {zn}, zn ∈ 〈               〉, ||zn|| = 1 

satisfying that ||zn−x||≥ 1, for all x ∈ 〈                 〉,n ≥ 2. 

 

Set z1 = x1/kx1k. For xn ∈ h / x1, x2, · · · , xn−1i, n ≥ 2, let yn−1 be the 

point in hx1, x2, · · · , xn−1i realizing dist(xn, 〈              〉). Let 

 

 

 

Then ||zn|| = 1 and, for all y ∈ 〈              〉, 

 

 

 

 

where y' = yn−1 + ||xn − yn−1|| y ∈ 〈              〉, since ||xn − yn−1|| ≤ ||xn 

– y'||. 

We claim that the bounded sequence {zn} does not have a convergent 

subsequence. For, if it has, this subsequence is a Cauchy sequence. 

Taking ε = 1, we have  

    ||znk − znj || < 1,  k, j sufficiently large. 

 

Taking nk > nj, as ||znk – x|| ≥ 1, for all x ∈ 〈               
 〉 and znj ∈ 

〈               
〉, we have 

     ||znk − znj ||≥ 1, 

 

Contradiction holds. We conclude that the closed unit ball is not 

sequentially compact in an infinite dimensional normed space.Digressing 

a bit, let x be a point lying outside Y , a proper subspace of the normed 
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space X. A point in Y realizing the distance from x to Y is called the best 

approximation from x to Y . It always exists when Y is a finite 

dimensional subspace. However, things change dramatically when the 

subspace has infinite dimension. For instance, let Y be the closed 

subspace of C[−1, 1] given by 

 

 

 

and h a continuous function satisfying 

 

 

 

 

One can show that the distance from h to Y is equal to 1, but it is not 

realized at any point on Y .You may try to prove this fact or consult 

chapter 5 of [L]. Later we will see that the best approximation problem 

has always a solution when the space X is reflexive. 

CHECK YOUR PROGRESS 

 

1.What is Banach space and define its properties.  

 

 

2. Explain Sequential Compactness 

 

 

 

3.4 ARZELA-ASCOLI THEOREM 
 

From the last section, we know that not all bounded sequences in an 

infinite dimensional normed space have convergent subsequences. It is 

natural to ask what additional conditions are needed to ensure this 

property. For the space C[a, b], a complete answer is provided by the 

Arzela-Ascoli theorem. This theorem gives a necessary and sufficient 

condition when a closed and bounded set in C[a, b] is sequentially 

compact. In order to have wider applications, we shall work on a more 
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general space C(K), where K is a closed, bounded subset of Rn, instead 

of C[a, b]. As every continuous function in K attains its maximum and 

minimum, its sup-norm is always finite. It can be shown that C(K) is a 

separable Banach space under the sup-norm. 

 

The crux for sequential compactness for continuous functions lies on the 

notion of equi-continuity. Let E be a subset of ℝn
. A subset F of C(E) is 

equi-continuous if for every ε > 0, there exists some δ such that 

 

 |f(x) − f(y)| < ε, for all f ∈ F, and |x − y| < δ, x, y ∈ E 

 

Recall that a function is uniformly continuous in E if for each ε > 0, there 

exists some δ such that 

 

   |f(x) − f(y)| < ε whenever |x − y| < δ, x, y ∈ E.  

 

So, equicontinuity means that δ can further be chosen independent of 

individual functions in F. 

 

There are various ways to show that a family of functions is 

equicontinuous. A function f defined in a subset E of ℝn
 is called Hӧlder 

continuous if there exists some α ∈ (0, 1) such that 

     

 |f(x) − f(y)| ≤ L|x − y|α, for all x, y ∈ E,   (1) 

 

for some constant L. The number α is called the Hӧlder exponent. The 

function is called Lipschitz continuous if (1) holds for α equals to 1. A 

family of functions F in C(E) is said to satisfy a uniform Hӧlder or 

Lipschitz condition if all members in F are Hӧlder continuous with the 

same α or Lipschitz continuous and (1) holds for the same constant L. 

Clearly, such F is equi-continuous. 

 

The following situation is commonly encountered in the study of 

differential equations. The philosophy is that equicontinuity can be 
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obtained if there is a good, uniform control on the derivatives of 

functions in F. 

 

Proposition 3.4.1. Let F be a subset of C(G) where G is a convex set in 

ℝn
. Suppose that each member in F is differentiable and there is a 

uniform bound on the partial derivatives of the functions in F. Then F is 

equicontinuous. 

 

Proof. For, x and y in G, (1 − t)x + ty, t ∈ [0, 1], belongs to G by 

convexity. Let ψ(t) ≡ f((1 − t)x + ty). 

From the mean-value theorem 

 

ψ(1) − ψ(0) = ψ0(t*)(1 − 0), t∗ ∈ [0, 1], 

 

and the chain rule 

 

 

 

 

 

  

where M = sup{|∂f/∂xj(x)| : x ∈ G, j = 1, . . . , n, f ∈ F} after using 

Cauchy-Schwarz inequality. So F satisfies a uniform Lipschitz condition 

with the Lipschitz constant n
1/2 

M 

 

Theorem 3.4.2. (Arzela-Ascoli). Let F be a closed set in C(K) where K 

is a closed and bounded set in ℝn
. Then F is sequentially compact if and 

only if it is bounded and equi-continuous. 

 

A set E is called bounded if there exists M > 0 such that |f(x)| ≤ M, for all 

f ∈ E and x ∈ K. 

In other words, it is a bounded set in the metric induced by the sup-norm. 

This theorem was proved for C[a, b] in the end of the nineteenth century 

by two italian mathematicians, the sufficient part by Ascoli and the 

necessary part by Arzela respectively. 



Notes 

45 

We shall need the following useful fact. 

 

Lemma 3.4.3. Let E be a set in the metric space (X, d). Then 

 

(a) That E is sequentially compact implies that for any ε > 0, there exist 

finitely many ε-balls covering E. 

 

(b) Assuming that E is closed and (X, d) is complete, the converse of (a) 

is true. 

Proof. (a) Suppose on the contrary that there exists some ε0 > such that 

no finite collection of ε0-balls covers E. For a fixed x1, the ball    
 (x1) 

does not cover E, so we can pick x2 ∈ /    
(x1). As    

 (x1) and    
 (x2) 

together do not cover E, there is x3 ∈ /    
 (x1)∪    

 (x2). Continuing 

this way, we find a sequence {xn} satisfying xn ∈ / Bε0(x1) ∪ · · · ∪ 

Bε0(xn−1). In particular, d(xi, xj) ≥ ε0 for distinct i, j, which shows that 

{xn} cannot have any convergent subsequence, a contradiction the 

sequential compactness of E. 

 

(b). Let {xn} be a sequence in E. We may assume that it has infinitely 

many distinct elements, otherwise the conclusion is trivial. Since E can 

be covered by finitely many balls of radius 1, there exists one, say B1, 

which contains infinitely many elements of E.  

 

Next, as E can be covered by finitely many balls of radius 1/2, there 

exists B2 of radius 1/2 so that B1 ∩ B2 contains infinitely many elements 

of E. Continuing this we get Bn of radius 1/n such that B1 ∩ B2 · · · ∩ Bn 

∩ E is non-empty for all n. Pick    
 ∈ B1 ∩ B2 · · · ∩ Bj ∩ E with nj−1 

< nj. Then {   
 } is a subsequence of {xn} which is also a Cauchy 

sequence. As X is complete and E is closed, it is convergent in E. We 

consider that E is sequentially compact. 

We shall also use the following lemma from elementary analysis. 

 

Lemma 3.4.4. Let {fn} be a bounded sequence of functions from the 

countable set {z1, z2, · · · , } to F. There is a subsequence of {fn}, {gn}, 

such that {gn(zj)} is convergent for every zj. 
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Proof. Since {fn(z1)} is a bounded sequence in F, we can extract a 

subsequence {  
 } such that {  

  (z1)} is convergent. Next, as {  
 } is 

bounded, it has a subsequence {  
 } such that {  

  (z2)} is convergent. 

Keep doing in this way, we obtain sequences {  
 
} satisfying  

 

(i) {  
   

} is a subsequence of {  
 
} and 

 

(ii) {  
 
 (z1)}, {  

 
 (z2)}, · · · , {fn j(zj)} are convergent. Then the diagonal 

sequence {gn}, gn =   
 , for all n ≥ 1, is a subsequence of {fn} which 

converges at every zj. 

The subsequence selected in this way is sometimes called to Cantor’s 

diagonal sequence. 

 

Proof of Arzela-Ascoli Theorem: 

Assuming boundedness and equicontinuity of F, we would like to show 

that F is sequentially compact. Since K is sequentially compact in ℝn
, by 

Lemma 3.3.3, for each j ≥ 1, we can cover K by finitely many balls 

D1/j(xj 1), · · · , D1/j(xj K) where the number K depends on j. For any 

sequence {fn} in F, by Lemma 3.3.4, we can pick a subsequence from 

{fn}, denoted by {gn}, such that {gn(  
 
.)} is convergent for each   

 
. We 

claim that {gn} is Cauchy in C(K). For, due to the equi-continuity of F, 

for every ε > 0, there exists a δ such that |gn(x) − gn(y)| < ε, whenever |x 

− y| < δ. Pick j0, 1/j0 < δ. Then for x ∈ K, there exists xj0 k such that  

 

   |x −   
  . | < 1/j0 < δ, 

As {gn(  
  } converges, there exists n0 such that 

              

 

 

Here n0 depends on   
  . As there are finitely many xj k0’s, we can 

choose some N0 such that (2) holds for all   
   and n, m ≥ N0. It follows 
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that |gn(x) − gm(x)| < 3ε, for all n, m ≥ N0, i.e., {gn} is Cauchy in C(K). 

By the completeness of C(K) and the closedness of  , {gn} converges to 

some function in F. 

Conversely, by Lemma 2.16, for each ε > 0, there exist f1, · · · , fN ∈ F 

such that F ⊂ SN j=1 Bε(fj) where N depends on ε. So for any f ∈ F, there 

exists fj such that  

    |f(x) − fj(x)| < ε,  for all x ∈ K. 

 

As each fj is continuous, there exists δj such that |fj(x) − fj(y)| < ε 

whenever |x − y| < δj. Letting  δ = min{δ1, · · · , δN}, then 

 

  |f(x) − f(y)| ≤ |f(x) − fj(x)| + |fj(x) − fj(y)| + |fj(y) − f(y)| < 3ε, 

 

for |x − y| < δ, so S is equicontinuous.  

 

As F can be covered by finitely many 1-balls, it is also bounded. 

We have completed the proof of Arzela-Ascoli theorem. 

We note the following useful corollary of the theorem, sometimes called 

Ascoli’s theorem. 

 

Corollary 3.4.5. A sequence in C(K) where K is a closed, bounded set in 

Rn has a convergent subsequence if it is uniformly bounded and 

equicontinuous. 

Proof. Let F be the closure of the sequence {fj}. As this sequence is 

uniformly bounded, there exists some M such that 

 

    |fj(x)| ≤ M, ∀x ∈ K, j ≥ 1. 

 

Consequently, any limit point of {fj} also satisfies this estimate, that is, F 

is bounded in C(K). Similarly, by equicontinuity, for every ε > 0, there 

exists some δ such that 

    |fj(x) − fj(y)| < ε/2, ∀x, y ∈ K,  |x − y| < δ. 

 

As a result, any limit point f of {fj} satisfies 
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|f(x) − f(y)| ≤ ε2 < ε,    ∀x, y ∈ K, |x − y| < δ, 

 

so F is also equicontinuous. Now the conclusion follows from the 

Arzela-Ascoli theorem. 

We present an application of Arzela-Ascoli theorem to ordinary 

differential equations. Consider the initial value problem 

 

 

 

 

where f is a continuous function defined in [−a, a] × [−b, b]. We are 

asked to find a differentiable function y(x) so that this equation is 

satisfied for x in some interval containing the origin. Under the further 

assumption that f satisfies the “Lipschitz condition”: For some constant  

 

L|f(x, y1) − f(x, y2)| ≤ L|y1 − y2|, for all x ∈ [−a, a], y1, y2 ∈ [−b, b], 

 

we learn from a course on ordinary differential equations that there exists 

a unique solution to this initial value problem defined on the interval I = 

(−a0, a0), where a0 = min{a, b/M}, where  

 

M = max{|f(x, y)| : (x, y) ∈ [−a, a] × [−b, b]}. 

 

Now, let us show that the Lipchitz condition can be removed as far as 

existence is in concern. First of all, by Weierstrass approximation 

theorem, there exists a sequence of polynomials {fn} approaching  f  in 

C([−a, a] × [−b, b]) uniformly. In particular, it means that Mn → M, 

where 

   Mn = max{|fn(x, y)| : (x, y) ∈ [−a, a] × [−b, b].  

 

As each fn satisfies the Lipschitz condition (why?), there is a unique 

solution yn defined on In = (−an, an), an = min{a, b/Mn} for the initial 

value problem 
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From |dyn/dx| ≤ Mn and limn→∞ Mn = M, we know from Proposition 

2.14 that {yn} forms an 

equicontinuous family.  

 

Clearly, it is also bounded. By Arzela-Ascoli theorem, it contains a 

subsequence {  
 
 } converging uniformly to a continuous function y ∈ I 

on every subinterval [α, β] of I and y(0) = 0 holds. It remains to check 

that y solves the differential equation for f. 

 

Indeed, each yn satisfies the integral equation 

 

 

 

As {  
 
 } → y uniformly, {f(x, ynj (x))} also tends to f(x, y(x)) uniformly. 

By passing to limit in the formula above, we conclude that 

 

 

 

holds. By the fundamental theorem of calculus, y is differentiable and a 

solution to our initial value problem. 

The solution may not be unique without the Lipchitz condition. Indeed, 

the function y1(x) ≡ 0 

solves the initial value problem y'(x) = y
1/2

, y(0) = 0, and yet there is 

another solution given by  y2(x) = x
2
/4, x ≥ 0 and vanishes for x < 0. 

CHECK YOUR PROGRESS 

3. Define - Hӧlder continuous & Lipschitz continuous 

 

 

 

4. State Arzela-Ascoli Theorem 
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3.5 LET’S SUM UP 
 

We concluded the application of Weierstrass approximation theorem in 

Arzela-Ascoli theorem. We comprehended Arzela-Ascoli theorem. The 

Arzela-Ascoli Theorem is a very important technical result, used in many 

branches of mathematics. Aside from its numerous applications to Partial 

Differential Equations, the Arzela-Ascoli Theorem is also used as a tool 

in obtaining Functional Analysis results, such as the compactness for 

duals of compact operators 

3.6 KEYWORDS 
 

Translational invariance implies that, at least in one direction, the 

object is infinite: for any given point p, the set of points with the same 

properties due to the translational symmetry form the infinite discrete 

set {p + na | n ∈ Z} = p + Z a 

Vector: A vector is an object that has both a magnitude and a direction. 

Geometrically, we can picture a vector as a directed line segment, whose 

length is the magnitude of the vector and with an arrow indicating the 

direction. 

Completeness- every nonempty set that has an upper bound has a 

smallest such bound, a property not possessed by the rational numbers. 

 

3.7 QUESTION FOR REVIEW 
 

1. Show that a metric d induced from a norm on the vector space X 

satisfies (i) d(x+z, y+z) = d(x, y) 

and (ii) d(αx, αy)) = |α|d(x, y). Use these properties to find two examples 

of metrics (on vector 

spaces) which are not induced by norms. 

2.  (a) Prove that  1
 a proper vector subspace of  P

for p > 1. 

(b) Now both the 1-norm and p-norm are norms on  1
. Are they 

equivalent? 
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3.  Let || · ||1 and || · ||2 be two norms on the vector space X. 

(a) Show that ||x||M = max{||x||1, ||x||2} is again a norm on X. 

(b) Is this true for ||x||m = min{||x||1, ||x||2}? 

4. (a) Establish the estimates 

    ||x||∞ ≤ ||x||p ≤ n
1/p

 ||x||∞, p ≥ 1. 

It shows that all p-norms are equivalent on Rn. 
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3.9 ANSWER TO CHECK YOUR 

PROGRESS 

 

1. Refer explanation of step 3  – 3.1.1  

2. Refer explanation – 3.2 

3. Provide definition – 3.3 

4. Provide statement and proof -3.3.2 
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UNIT 4: DUAL SPACE I 
 

 

STRUCTURE 

4.0 Objective 

4.1 Introduction 

4.2 Linear Functional 

4.3 Concrete Dual Spaces 

4.4 Hahn-Banat Theorem  

4.5 Let’s Sum Up 

4.6 Keywords 

4.7 Questions for Review 

4.8 Suggested Readings 

4.9 Answers to Check your Progress 

 

4.0 OBJECTIVE 
 

Understand the concept of Linear Functionals 

Enumerate the Concrete Dual Spaces 

Comprehend Hahn-Banach Theorem 

 

4.1 INTRODUCTION 
 

In this chapter we further our study of Banach spaces by examining 

continuous linear functional on them. Each of these functional gives very 

limited information on the space, but as a whole they become 

enormously helpful. The fundamental Hahn-Banach theorem guarantees 

there are sufficiently many such functional for various purposes. They 

form a normed space called the dual space of the original space. We 

identify the dual spaces of  n
,  p

,1 ≤ p < ∞, and C[a, b]. Reflexive 

spaces arise naturally when we study the dual of dual spaces. 
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4.2 LINEAR FUNCTIONALS 
 

 Any linear function from a vector space X to its scalar field   is called a 

linear functional. It is clear that the collection of all linear functional 

from X to  , denoted by L(X,  ), forms a vector space over F under point 

wise addition and scalar multiplication of functions. Linear functional 

play a crucial role in the study of the structure of vector spaces. There are 

two subspaces associated to a linear functional, namely, its image and its 

kernel, and the latter is more relevant. Indeed, let Λ ∈ L(X,  ), the null 

space (or kernel) of Λ is given by N(Λ) (or ker Λ) the set {x ∈ X : Λx = 

0}. It is clear that the kernel N(Λ) forms a subspace of X and it is proper 

if and only if Λ is not identically zero. 

 

Proposition 4.2.1. Let X be a vector space over  . Then 

(a) L(X, F) is a vector space over F, 

(b) N(Λ) is a subspace of X for any Λ ∈ L(X, F), and 

(c) if Λ is non-zero, then for any x0 ∈ X \ N(Λ), X = N(Λ) ⊕ 〈  〉. 

 

Proof. (a) and (b) can be verified directly. It suffices to prove (c). Let x0 

be a point satisfying Λx0 ≠ 0. 

For any x ∈ X, the vector y = x − λx0 where λ = Λx/Λx0 belongs to N(Λ): 

Λ(x − λx0) = Λx − λΛx0 = 0. 

Therefore, x = y + λx0, that is, X = N(Λ) + 〈  〉. To show this is a direct 

sum, suppose that x = 

y1 + λx0 = y2 + µx0. Then y1 − y2 = (µ − λ)x0, so (µ − λ)Λx0 = Λ(y1 − 

y2) = 0 implies that µ = λ and y1 = y2. 

The meaning of (c) can be understood better by looking at the finite 

dimensional situation. Any 

linear functional Λ on Fn is completely determined by its values at a 

basis. For instance, consider the canonical basis e1, · · · , en and let αj = 

Λej, j = 1, · · · , n, for x ∈  n
, x = ∑     

 
 . Then 
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Gives the general formula for a linear functional on  n
. What is N(Λ) for 

a nonzero Λ? Apparently it is composed of the set {x ∈  N
 : α1x1 + · · · + 

αnxn = 0}. When  n
 = ℝn

, this is precisely the equation for a hyperplane 

passing through the origin whose normal direction is given by (α1, · · · , 

αn)/(  
 + · · · +   

 )
1/2

. In general, a hyperplane is one dimension lower 

than its ambient space. Thus (c) tells us that in infinite dimensional 

situation this is still true: After adjoining a single dimension (spanned by 

x0) to it, N(Λ) ⊕ 〈  〉 is the entire space. 

The abundance of linear functionals can be seen by the following 

abstract consideration. Let B be a Hamel basis for X. For each x in this 

basis we define a functional Λx by setting Λx(αx) = α and Λxy = 0 for any 

y in B distinct from x where α is a fixed scalar. As every vector can be 

written as a finite linear combination of elements from B, it is easy to see 

that Λx extends to become a linear functional on X. 

 

Moreover, one readily verifies that all these Λx’s form a linearly 

independent set, so L(X, F) is of infinite dimension. 

When it comes to a normed space (X, ||· ||), a linear functional may not 

be related to the norm 

structure of the space. To have good interaction with the norm structure 

it is more desirable to look at linear functionals which are also 

continuous with respect to the norm. By linearity it is easy to show that a 

continuous linear functional is continuous everywhere once it is so at a 

single point. A related notion of continuity of a linear functional is its 

boundedness. We used to call a function bounded if its image is a 

bounded set. For linear functionals boundedness has a different meaning. 

We call a linear functional Λ bounded if it maps any bounded set in X to 

a bounded set in  .  

In other words, for any bounded S in X, there exists a constant C such 

that |Λx| ≤ C, for all x ∈ S. By linearity for Λ to be bounded it suffices 

that it maps a ball to a bounded set in the scalar field, or equivalently in 

the form of an estimate, there exists a constant C' such that |Λx| ≤ C'||x|| 

for all x ∈ X. It turns out that for a linear functional continuity and 

boundedness are equivalent. We put all these in the following 

proposition. 
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Proposition 4.2.2. Let Λ ∈ L(X,  ) where X is a normed space. We have 

 

(a) Λ is continuous if and only if Λ is continuous at one point. 

(b) Λ is bounded if and only if there exists C > 0 such that |Λx| ≤ Ckxk 

for all x. 

(c) Λ is continuous if and only if Λ is bounded. 

 

Proof. (a) It suffices to show the “if” part. Suppose Λ is continuous at x0, 

that’s, Λxn → Λx0 whenever xn → x0 in X. For any x1 ∈ X and xn → x1, 

we have  

xn − x1 + x0 → x0,  

so 

 Λ(xn − x1 + x0) → Λ(x0). 

 

By linearity,  

Λxn − Λx1 + Λx0 → Λx0 which means Λxn → Λx1. 

 

(b) Let Λ be bounded and take S to be the closed unit ball B1(0). Then 

we can find a constant C1 

such that |Λx| ≤ C1. For any nonzero x, x/ ||x||∈ B1(0), we have 

|Λ(x/||x||)| ≤ C1, i.e., |Λx| ≤ C1||x||. 

Conversely, let S be a bounded set. We can find a large ball BR(0) to 

contain S. Then for any x in S, |Λx| ≤ C||x||≤ CR. 

 

(c) If Λ is not bounded, there exists kxnk ≤ M but |Λxn| → ∞. Then the 

sequence {yn}, yn = xn/|Λxn|, satisfies ||yn||→ 0 but |Λyn| = 1, so Λ cannot 

be continuous. 

On the other hand, let xn → x0, that’s, ||xn − x0||→ 0. When Λ is 

bounded, by (b) |Λxn − Λx0| = |Λ(xn − x0)| ≤ Ckxn − x0k → 0, so Λ is 

continuous. 

Proposition 4.2.3. A linear functional on a normed space is bounded if 

and only if its kernel is closed. 

We use X' to denote all bounded linear functionals on X. It is clear that X' 

is a subspace of L(X, F). When X is of finite dimension, we have seen 

that every linear functional is of the form 
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hence it is continuous. Thus X’ = L(X,  ) when X is of finite dimension. 

However, this is no longer true when X is of infinite dimension. Let B be 

a Hamel basis for an infinite dimensional space X. We may pick a 

countably infinite set {x1, x2, x3, · · · }, ||xk|| = 1, ∀k, from B and define T 

by assigning T xk = k, k = 1, 2, · · · and T x = 0 for the remaining vectors 

in B. As B is a basis, T can be extended to become a linear functional on 

X. Clearly it cannot be bounded. 

Now we come to the norm structure on X' inherited from X 

 

Proposition 4.2.4. Let X be a normed space and Λ a bounded linear 

functional on X and define 

 

 

 

 

Then || · || is a norm on X'. 

Before the proof of this proposition we point out a few things. First, the 

operator norm kΛk is also given by 

 

 

 

Or 

 

 

Second, we always have the useful inequality 

 

 

Third, the definition of the operator norm is basically the sup-norm for 

continuous functions. However, as the supermom is always infinity for 

any nonzero linear functional, we modify it by taking the supremum over 

the unit ball {||x|| ≤ 1}. Thanks to boundedness of the functional this 

supremum is always a finite number, and thanks to linearity it satisfies 

(N1). 



Notes 

58 

Proof. Clearly (N1) and (N2) hold. To verify (N3), for Λ1, Λ2 ∈ X0 and 

x ∈ X, ||x|| = 1, 

 

 

From Proposition 4.1.4, (X', || · ||) forms a normed space called the dual 

space of (X, || · ||). The norm on X’ is called the operator norm 

sometimes. It is a bit surprising that X' behaves better than X as 

implicated by the following proposition. 

 

Proposition 4.2.5. The dual space X' of a normed space X is a Banach 

space. 

Proof. Let {Λk} be a Cauchy sequence in X', that’s, for every ε > 0, there 

is some k0 such that ||Λk−Λl|| < ε for all k, l ≥ k0. For each x ∈ X, 

 

 

 

which shows that {Λkx} is a Cauchy sequence in F. By the completeness 

of F, limk→∞ Λkx exists for every x ∈ X. Setting Λx ≡ limk→∞ Λkx, it is 

routine to check that Λ is linear. Moreover, by letting l → ∞ in (1), we 

have 

  

 

It follows that 

 

 

 

so Λ is also bounded. From (2) we have 

 

   |Λkx − Λx| ≤ ε,  k ≥ k0, 

 

for all x, ||x|| = 1, so Λk → Λ in operator norm. 
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4.3 CONCRETE DUAL SPACES 
 

We determine the dual spaces of  n
 and  p

, 1 ≤ p < ∞ in this section. 

Recall that we identify two normed spaces (X1, ||·||1) and (X2, ||·||2) if 

there exists a norm-preserving linear isomorphism from X1 to X2. 

 

Proposition 4.3.1. For 1 ≤ p < ∞, the dual space of  p
 is given by  q

 

where p and q are conjugate. 

Proof. We only consider p > 1 and leave the case p = 1 to you. 

 

We define a map from ( p
)0 to  q

 as follows. For each Λ ∈ ( p
)0, let ΦΛ 

be the sequence α = 

(Λe1, Λe2, · · · ) where {ej} is the “canonical sequence”. This is a linear 

map from ( p
)0 to the space of sequences. We claim that its image 

belongs to  q
. 

 

Letting α
N
 = (sgn(α1)|α1|

q−1
, · · · , sgn(αN )|αN|

q−1
, 0, 0, · · · ) and using the 

inequality |Λx| ≤ ||Λ||||x||p  for x = α
N
 we have, as 

 

 

 

 

 

Letting N → ∞, we have 

 

 

We have shown that Φ maps ( p
)' into  q

. 

To show that Φ is onto we construct its inverse. For each α in `q we 

define Ψα = Λ α where Λα is given by Λαx = Pj αjxj. By Hӧlder 

inequality, this map is well-defined and 
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It follows that 

Next we claim that 

Indeed, for α ∈  q
, ΦΨα = ((Ψα)e1, (Ψα)e2, · · · ) = (α1, α2, · · · ) = α, so 

the claim holds. This claim shows in particular that Φ is onto. By 

combining it with (3) and (4), we have 

    ||Λ|| = ||ΦΨΛ|| ≤ ||ΦΛ||q ≤ ||Λ||, 

 

whence ||ΦΛ||q = ||Λ||, that is, Φ is norm-preserving. We have succeeded 

in constructing a norm-preserving linear isomorphism from ( p
)' to  q

, so 

these two spaces are the same. 

A similar but simpler proof shows that the dual of  n
 under the p− norm 

is itself under the q-norm for p ∈ [1, ∞]. 

It is a standard result in real analysis that the dual space of L
p
(a, b), 1 ≤ p 

< ∞, is L
q
(a, b) where 

q is conjugate top. But it is not true when p is infinity.  

CHECK YOUR PROGRESS 

1. Explain Dual space and operator norm 

 

 

 

2. Enumerate - The dual space X' of a normed space X is a Banach space. 

 

 

 

4.4 HAHN-BANACH THEOREM 
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In the last section we identified the dual space of Fn and `p, 1 ≤ p < ∞. In 

particular, it shows that there are many non-trivial bounded linear 

functional in these spaces. However, in a general normed space it is not 

clear how to find even one which distinguishes two points. The theorem 

of Hahn-Banach ensures that we can always do this. This extremely 

useful theorem, which is formulated as a statement on extension, is one 

of the most fundamental results in functional analysis.  

Considering its applications in later chapters, it is necessary to formulate 

the theorem not only in the setting of a normed space but in a vector 

space. We call a function p defined in a vector space X to(−∞,  ∞]  

sub additive if for all x, y in X, 

      p(x + y) ≤ p(x) + p(y), 

 

and positive homogeneous if for all x in X and α ≥ 0, 

 

      p(αx) = αp(x). 

 

Note that the norm is a subadditive, positive homogenous function due to 

(N2) and (N3). A nonnegative, sub additive, positive homogeneous 

function on a vector space is sometimes called a gauge or a Murkowski 

functional. 

Any positive multiple of the norm is a gauge on a normed space. Other 

gauges can be found as follows. Let C be a non-empty convex set 

containing 0 in a vector space X. Define 

 

    pC(x) = inf{α : x ∈ αC, α > 0} 

 

and set pC(x) = ∞ if no such α exists. We claim that pC is a gauge. 

Clearly, pC(αx) = αpC(x) for every positive α. On the other hand, 

consider x, y in X where pC(x) and pC(y) are finite (subadditivity holds 

trivially if they are not). According to the definition of a gauge, for every 

ε > 0, there exist positive α, β satisfying pC(x) ≥ α − ε, pC(y) ≥ β − ε and 

x/α, y/β ∈ C. Therefore, by the convexity of C 
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which implies that 

     pC(x + y) ≤ α + β ≤ pC(x) + pC(y) + 2ε. 

 

So pct. is sub additive. Gauges of convex sets form an important class of 

sub additive, positive homogeneous functions. 

Now we state and prove a general form of the Hahn-Banach theorem. 

 

Theorem 4.4.1. Let X be a vector space and p a sub additive, positive 

homogeneous function in X. Suppose Λ ∈ L(Y, F) where Y is a proper 

subspace of X satisfies  

     ReΛx ≤ p(x),    for all x ∈ Y. 

 

Then there is an extension of Λ to L(X, F), Λ e, such that  

 

     Re  ̃ex ≤ p(x),   for all x ∈ X. 

We will treat the real case first. The complex case can be deduced from 

the real case. The technical part of the proof of this theorem is contained 

in the following lemma. 

 

Lemma 4.4.2  (One-Step Extension). Let F = R, Λ ∈ L(Y, R) and x0 ∈ X 

\ Y . There exists an 

extension Λ1 of Λ on 〈    〉such that Λ1x ≤ p(x). 

Proof. Let Y1 = 〈    〉 Every element in Y1 is of the form x = y + c x0, y ∈ 

Y , c ∈ R. Any linear 

functional Λ1 extending Λ satisfies  

 

    Λ1x = Λ1(y + c x0) = Λ1y + cΛ1 x0 = Λy + cΛ1 x0. 

 

 Conversely, by assignment any value to Λ1x0 one obtains an extension 

of Λ in this way. Nevertheless, the point is to determine the value of Λ1 

x0 so that Λ1x ≤ p(x) on Y1. To show such choice is possible, let’s focus 

at c = ±1. For an admissible extension, one should have 

 

    Λy ± Λ1x0 ≤ p(y ± x0),     (5) 
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or, 

    Λ1x0 ≤ p(y + x0) − Λy 

 

And 

    Λy − p(y − x0) ≤ Λ1x0. 

 

It implies that for all y, z ∈ Y , 

 

   Λz − p(z − x0) ≤ Λ1x0 ≤ p(y + x0) − Λy. 

Therefore, if 

 

 

 

holds, we can pick any γ ∈ [α, β] and set Λ1x0 = γ, so that (3.5) holds. 

Before verifying this, let’s show that it implies Λ1 is our desired 

extension. In fact, by linearity, for any c > 0, 

 

 

 

 

 

so Λ1x ≤ p(x) for all x in Y1. It remains to verify (6). But this is easy. We 

write (6) as 

    Λz − p(z − x0) ≤ p(y + x0) − Λy, ∀y, z ∈ Y, 

 

and it holds if and only if 

Λ(y + z) ≤ p(z − x0) + p(y + x0). 

Certainly this is true by the subaddivity of p 

Λ(y + z) ≤ p(y + z) = p(y + x0 − x0 + z) ≤ p(y + x0) + p(z − x0). 

 

Proof of Theorem 4.4.1. Let   = ℝ first. Set   = {(Z, T ): Z is a 

subspace of X containing Y and 

T ∈ L(Z, ℝ) is an extension of Λ satisfying T x ≤ p(x) on Z.}. D is non-

empty since (Y, Λ) ∈  . A 

relation “≤” is defined on  , (Z1, T1) ≤ (Z2, T2) if and only if (a) Z1 is a 
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subspace of Z2 and (b) T2 extends T1. We check easily that ( , ≤) is a 

poset. 

We claim that each chain   in ( , ≤) has an upper bound. Indeed, for all 

Z in   , let 

 

 

 

We show that Z*  is a subspace of X. Let z1, z2 ∈ Z*.  Then z1 ∈ Zα and z2 

∈ Zβ for some α, β. As C is a chain, either Zα is a subspace of Zβ or the 

other way around. Let’s assume the latter, so z1, z2 ∈ Zα and λz 1 + µz2 ∈ 

Zα ⊂ Z∗. Z∗ is a subspace. By a similar reason we can show that Tαz = 

Tβz if z ∈ Zα ∩ Zβ, so T* is well-defined. For any z ∈ Z*, there exists 

some Zα containing z, so T* z = Tαz ≤ p(z).  

We have shown that (Z*, T*) is an upper bound for C . Now we apply 

Zorn’s lemma to conclude that there is a maximal element (Zmax, Tmax) in 

D. We claim that Z max = X. For, if this is not true, we can find x0 ∈ X \ 

Zmax. Using the one-step extension lemma, we find T1 on Z1 = 

〈        〉extending Tmax and T1x ≤ p(x), x ∈ Z1. So (Z1, T1) ∈ D, that is 

to say, (Zmax, Tmax) cannot be a maximal element. This contradiction 

shows that Zmax = X, and Λ e ≡ Tmax is our desired extension of Λ. This 

completes the proof of the general Hahn-Banach theorem 

for the real case. 

To treat the complex case, we need the following lemma. It asserts that 

any complex linear functional is uniquely determined by its real or 

imaginary part. 

Lemma 4.4.3. (a) Let Λ be in L(X, C) where X is a complex vector 

space. Then its real and imaginary parts are in L(X, R) when X is 

regarded as a real vector space. Furthermore, 

 

    Λx = ReΛx − iReΛ(ix),  for all x ∈ X.   (7) 

 

(b) Conversely, for any Λ1 in L(X, R), there exists a unique element in 

L(X, C) taking Λ1 as its real part so that the above formula holds. 

Proof. It is clear that both the real and imaginary parts of a complex 

linear functional are linear functionals over the reals. Write 
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    Λx = Re(Λx) + i Im(Λx) ≡ Λrx + i Λix. 

 

We claim that they are related by 

 

 Λr(ix) = −Λi(x), Λi(ix) = Λrx,    (8) 

 

so (7) holds. To see this, simply use the linearity of Λ over C to get 

  

   Λ(ix) = i Λ(x), 

so, 

    Λr(ix) + i Λi(ix) = i Λrx − Λix, 

 

and (8) holds. 

Now, given a real linear functional Λ1 on X, define 

 

     Λx = Λ1x − iΛ(ix). 

It is clear that the real part of Λ is equal to Λ1. It remains to check that Λ 

is linear. For x1, x2 ∈ X, and α, β ∈ ℝ, 

 

 Λ(x1 + x2) = Λ1(x1 + x2) − iΛ1(i(x1 + x2)) 

= Λ1 x1 − i Λ1(i x1) + Λ1x2 − i Λ1(i x2) 

= Λx1 + Λx2; 

 

Λ((α + iβ)x) = Λ(αx + iβx) = Λ(αx) + Λ(βix) 

= Λ1(αx) − iΛ1(αix) + Λ1(βix) − iΛ1(iβix) 

= αΛ1x − iαΛ1(ix) + βΛ1(ix) + iβΛ1x 

= (α + iβ)Λx; 

 

We complete the proof of the general Hahn-Banach theorem as follows. 

We first obtain a real extension Λ1 of the real part of the complex linear 

functional Λ satisfying Λ1x ≤ p(x) on X. By the lemma above, we find a 

complex linear functional Λ on ˜ X whose real part is given by Λ1 

extending Λ.  ̃ is our desired extension. 

We have the following version of Hahn-Banach theorem on normed 

spaces. 
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Theorem 4.4.4. Let (X, ||·||) be a normed space and Y a proper subspace 

of X. Then any Λ ∈ Y 0 admits an extension to some Λ e ∈ X0 with ||Λ e|| 

= ||Λ||. 

Notice that from definition, in general, we have 

 

 

 

It suffices to establish the inequality from the other direction. 

Proof. Consider first the real case. Taking p(x) = ||Λ||||x||, we apply the 

general Hahn-Banach theorem to obtain an extension of Λ, Λ, which 

satisfies ̃,  ̃ ≤ ||Λ||||x||. Replacing x by −x, we get −Λ  ̃ ≤ ||Λ||||−x|| = 

||Λ||||x||, so | ̃ x| ≤ ||Λ||||x||, which implies || ̃|| ≤ ||Λ|| on X. 

 

For the complex case, let Λ be an extension of Λ satisfying Re ̃x ≤ 

||Λ||||x|| on X. Replacing x by −x, we have |Re ̃x| ≤ ||Λ||||x||. For any x , 

there is a complex number e
iθ

 such that  ̃ x = | ̃ x |e
iθ

. It follows that | ̃ 

x| =  ̃ (e
−iθ

 x) = Re ̃ ( e
−iθx

) ≤ ||Λ|||| e
−iθ

 x || = ||Λ||||x||, that is, || ̃|| ≤ 

||Λ||.  

The proof is completed. 

CHECK YOUR PROGRESS 

3. Define sub additive and positive homogeneous 

 

 

 

4. State Hahn-Banach theorem on normed spaces 

 

 

 

4.5 LET’S SUM UP 
 

We have clarified the nonnegative, sub additive, positive homogeneous 

function on a vector space is sometimes called a gauge or a Minkowski 
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functional. Gauges of convex sets form an important class of 

subadditive, positive homogeneous functions. It turns out that for a linear 

functional continuity and boundedness are equivalent. 

4.6 KEYWORDS 
 

1. Extension - The extension of an object in abstract algebra, such as a 

group, is the underlying set of the object. The extension of a set is 

the set itself. 

2. Suffice - In mathematics, a condition that must be satisfied for a 

statement to be true and without which the statement cannot be true. 

3. Notions - are called types if each object belongs to only one of them, 

which is then also called the type of the variables that can name it.  

4.7 QUESTION FOR REVIEW 
 

1. Show that a linear functional Λ on a normed space is bounded if and 

only if its kernel is closed 

2. Let (X, || · ||)) be an infinite dimensional normed space. Given any Λ1, 

· · · , Λn in X'. Show that there exists a non-zero point x ∈ X satisfying 

Λjx = 0 for all j = 1, · · · , n. 

3. Show that ( 1
)’ =  ∞
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4.9 ANSWER TO CHECK YOUR 

PROGRESS 
 

1. Support explanation with proposition & proof – 4.1.4  

2. Provide proof – 4.1.5 

3. Provide explanation – 4.3 

4. Provide statement and proof -4.3.4 
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UNIT 5: DUAL SPACES II 
 

STRUCTURE 

5.0 Objective 

5.1 Introduction 

5.2 Consequences of Hahn-Banach Theorem 

5.3 The Dual Space of Continuous Functions 

5.4 Reflexive Spaces  

5.5 Let’s Sum Up 

5.6 Keywords 

5.7 Questions for Review 

5.8 Suggested Readings 

5.9 Answers to Check your Progress 

5.0 OBJECTIVE 
 

Understand the concept of Consequences of Hahn-Banach Theorem 

Comprehend The Dual Space of Continuous Functions 

Enumerate the concept of Reflexive Spaces 

5.1 INTRODUCTION 
 

In the branch of functional analysis, a dual space refers to the space of all 

continuous linear functional on a real or complex Banach space. The dual 

space of a Banach space is again a Banach space when it is endowed 

with the operator norm. 

 

5.2 CONSEQUENCES OF HAHN-BANACH 

THEOREM 
 

Theorem 5.2.1. Let (X, || · ||) be a normed space and Y a closed 

subspace of X. For any x0 ∈ X ∖ Y , there exists Λ ∈ X', ||Λ|| = 1, 

satisfying  
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    Λx0 = dist(x0, Y ),  

and  

    Λy = 0, for all y ∈ Y. 

Proof. Let d = dist(x0, Y ). It is positive because Y is closed and x0 stays 

outside Y . In the subspace Y1 =〈    〉, every vector can be written 

uniquely in the form y + αx0. We define Λ0 on Y1 by setting  

    Λ0(y + αx0) = α||x0||. 

Then Λ0 is linear and vanishes on Y . Moreover, using 

 

 

 

 

 

We have 

 

in other words, Λ0 ∈ Y1' and 

 

 

 

We claim that || Λ0|| = ||x0||/d. For, taking yn ∈ Y , ||yn + x0|| → d, 

 

  

   

hence ||x0||/d ≤ ||Λ0||. 

Now, we apply Hahn-Banach theorem to obtain an extension  ̃ of Λ0 in 

X' with  

     || ̃ || = || Λ0|| = ||x0||/d. 

 

Then, a constant multiple of  ̃, d/||x0|| ̃, is our desired functional. 

 

Corollary 5.2.2 . For any non-zero x0 ∈ X, there exists Λ ∈ X' such that 

Λx0 = ||x0|| and ||Λ|| = 1. 

 

Proof. Apply Theorem 4.3.4  by taking Y = {0}. 
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A bounded linear functional with the properties described in this 

corollary may be called a “dual 

point” of x0. It may not be unique. For instance, consider (ℝ2
, || · ||1) and 

the vector x0 = (1, 0). It is readily checked that the two linear functionals 

Λ1(x, y) = x and Λ2(x, y) = x +y are dual points of (1, 0). 

Corollary 5.2.3. For any x ∈ X, 

 

 

 

 

Proof. From ||Λx|| ≤ ||Λ||||x|| we obtain 

 

 

 

 

On the other hand, for a given non-zero x, pick Λ* such that ||Λ*|| = 1 

and Λ*x0 = ||x0||. We have 

 

 

 

 

This corollary tells us that there are sufficiently many bounded linear 

functional to determine the norm of any vector. Furthermore, the “sup” 

in the above expression can be strengthened to “max” as it is attained by 

Λ* 

 

5.3 THE DUAL SPACE OF CONTINUOUS 

FUNCTIONS 

 

The dual space of C[a, b] is described essentially by a representation 

theorem of Riesz. To formulate it we need to introduce two new 

concepts: Riemann-Stieltjes integral and functions of bounded variations. 

Since our focus is on the application of the Hahn-Banach theorem, we 
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simply state basic results (Facts 1 to 4) on these new concepts and leave 

them as exercises. You may consult Rudin’s “Principles of Mathematical 

Analysis” or [Hewitt-Stromberg] for more on Riemann-Stieltjes 

integrals. 

First of all, for any two complex-valued functions f and g on [a, b] we 

define its Riemann-Stieltjes sum R(f, g, P ) with respect to a tagged 

partition   ̇  by 

 

 

 

 

where a = x0 < x1 < · · · < xn−1 < xn = b is the partition and zj ∈ [xj−1, xj] 

is a tag. We call f is 

Riemann-Stieltjes integrable with respect to g if there exists I ∈ F 

satisfying: For each ε > 0, there exists a δ such that 

 

   |R (f, g, P ) − I| < ε,  ∀P,  ||P|| < δ. 

Recall that the length of the partition P , ||P||, is given by max j=1{xj − 

xj−1}. Write I = ∫  
 

 
f(x)dg(x) or simply ∫  fdg and denote the class of all 

Riemann-Stieltjes integrable functions by Rg[a, b]. Using the definition 

one can establish the following facts. 

Fact 1. 

(a) For f1 and f2 in Rg[a, b] and α1, α2 ∈ F, we have α1f1 + α2f2 belongs 

to Rg[a, b], and 

 

 

 

 

(b) For f ∈ Rg1[a, b] ∩ Rg2[a, b] and α1, α2 ∈ F, f belongs to 

Rα1g1+α2g2[a, b] and 

 

  

 

We will single out a class of g’s so that all continuous functions are 

Riemann-Stieltjes integrable with respect to each of them. A function g 
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on [a, b] is called a function of bounded variation (a BV-function for 

short) if there exists a constant M such that 

 

 

 

 

for all partitions P on [a, b]. For a function g of bounded variation, set its 

total variation to be 

 

 

 

It is easy to see that ||g||BV satisfies (N2) and (N3) but not (N1), which 

must be replaced by: “||g||BV = 0 implies g is a constant”. Nevertheless, 

we can remove this unpleasant situation by restricting to the subset, 

BV0[a, b], consisting of all BV-functions which vanish at a. Then BV0[a, 

b] forms a normed vector space under ||.||BV. A by-now routine check 

shows that it is complete. 

Let’s look at some examples of BV-functions. 

Example. Every monotone function on [a, b] is of bounded variation. In 

fact, for any P , 

 

 

 

 

when g is increasing, so ||g||BV = g(b) − g(a). When g is decreasing, 

||g||BV = g(a) − g(b). 

 

Example. If g is continuously differentiable on [a, b], then ||g||BV ≤ 

||g'||∞(b − a). For 

where zj ∈ [xj−1, xj]. 

Example. Not every continuous function is of bounded variation. 

Consider the continuous function on [0, 2/π] given by 
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Taking the partition P N to be {(n + 1/2)π−1 : n = 1, · · · , N} together 

with the endpoints, one shows that V h = ∞ after letting N → ∞. 

 

Fact 2. Every real-valued BV-function can be expressed as the 

difference of two increasing functions. This is known as Jordan 

decomposition theorem. 

Fact 3. Every continuous function on [a, b] is Riemann-Stieltjes 

integrable with respect to a BV-function in [a, b]. 

In other words, ∫ fdg is well-defined when f ∈ C[a, b] and g ∈ BV [a, b]. 

Example. Taking g(x) = x, the Riemann-Stieltjes integral reduces to the 

Riemann integral. 

Example. Taking g to be continuously differentiable 

 

 

Example. Taking g = χ[c,b] , a < c < b, in 

 

 

 

all terms vanish except the subinterval [xj−1, xj] containing c in its 

interior (we may take a partition in which c is not an endpoint of any 

subinterval.), so, as ||P|| → 0, 

 

 

Note that we also have  

 

 

Now we come to bounded linear functional on C[a, b]. Let’s consider 

two examples. First, fix a point c ∈ [a, b] and let Λ1f = f(c). This 

“evaluation map” is clearly a linear functional with operator norm equal 

to 1. Next, fix an arbitrary continuous function φ and define 
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Λ2 is also in the dual of C[a, b]. Both functionals can be unified in the 

setting of Riemann-Stieltjes integrals. Indeed, the first functional 

corresponds to taking g = χ(c,b] and the second one to taking g to be a 

primitive function of φ. In view of this, to every BV-function g we 

associate it with the functional 

 

 

It is not hard to verify that Λg belongs to the dual space of C[a, b] (see 

below). Our goal is to show that such association is a norm-preserving 

linear isomorphism. However, above Example is an obvious obstruction; 

as both functions χ(c,b] and χ(c,b] give the same evaluation map f(c), this 

association cannot  be injective. This difficulty turns out to be minor, and 

we can overcome it by further restricting the space BV0[a, b]. 

 

A function g is called right continuous if limh↓0 g(x + h) = g(x). Let 

 

  V [a, b] = {g ∈ BV0[a, b] :   g is right continuous on [a, b).} 

 

Notice that χ(c,b] is right continuous but χ(c,b] is not. It is clear that V [a, 

b] is a subspace of BV0[a, b]. 

 

Fact 4. (a) Every BV0-function g is equal to a unique V -function g e 

except possibly at countably many points. 

(b) ∫ fdg = ∫  f   ̃, for all f ∈ C[a, b]. 

(c) For g1, g2 ∈ V [a, b], ∫  fdg1 = ∫ fdg2 implies g1 = g2. 

 

Fact 4 (a) can be deduced from a known result in Elementary Analysis, 

namely, the discontinuity points of a monotone function consist of jump 

discontinuity and there are at most countable many of them. Since a BV-

function is the difference of two increasing functions, the same property 
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holds for it. From Facts 1 and 4 we see that the map g ↦ Λg defines a 

linear injective 

map Φ from V 

[a, b] to C[a, 

b]0. In fact, we 

have 

 

 

 

Hence 

Here is a version of the Riesz representation theorem. 

 

Theorem 5.3.2. There is a norm-preserving linear isomorphism from 

C[a, b]' to V [a, b]. 

 

Proof. The norm-preserving linear isomorphism is, of course, Φ. Let’s 

find its inverse. Let Λ ∈ C[a, b]0. 

Observing that C[a, b] is a subspace in the normed space B[a, b] of 

bounded functions, we can use HahnBanach theorem to find an extension 

Λ e ∈ B[a, b]0 with || ̃||= ||Λ||. This is crucial! 

Our desired inverse g should satisfy Λf = Λgf for f ∈ C[a, b]. Formally, 

 

 

 

 

 

as g vanishes at a. Motivated by this, we define 

 

 

and g(0) = 0. We claim that g ∈ BV0[a, b] and ||g||BV ≤ ||Λ||. 

 

For, with respect to an arbitrary partition P , 
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Let’s 

denote the function inside the above bracket by h. Noting that for all x ∈ 

[a, b], there exists a unique subinterval [a, x1] or (xj−1, xj] containing x, 

so h(x) =      or        for some j0. In any case |h(x)| = 1. It follows that 

||h||∞ = 1 and that 

 

 

 

for the partition P , so g ∈ BV0[a, b] and ||g||BV ≤ ||Λ||. 

We define Ψ : C[a, b]0 → V [a, b] by Ψ(Λ) =  ̃ where  ̃ is the right 

continuous modification of g 

satisfying  ̃ (a) = 0 defined above. The estimate || ̃||BV = ||g||BV ≤ ||Λ|| 

can be written as 

 

    

  

To complete the proof, we claim that Λf = Λ ̃f, for all f ∈ C[a, b]. It 

means Φ(Ψ(Λ)) = Λ on C[a, b]0. In particular, Φ is surjective. Moreover, 

from (10) and (9) we have 

  

  

 

so Φ is norm-preserving. 

It remains to verify Λf = Λgf. Given ε > 0, since f is Riemann-Stieltjes 

integrable with respect to 

g, there is some δ1 such that 
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for P , kP k < δ1. Using 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(11)  As f is uniformly continuous on [a, b], for every ε > 0, there 

is some δ2 such that 

 

   |f(x) − f(y)| < ε,   for all x, y, |x − y| < δ2. 

 

We take δ = min{δ1, δ2} and kP k < δ. Then 

 

As each x belongs to exactly one subinterval, say, the j0-th, 

 

     |f(x) – f'(x)| = |f(x) − f(xj0)| < ε 

 

if || P || < δ. That means, ||f – f'||∞ < ε, so 
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Combining with (11), 

 

 

Since ε is arbitrary and Λ extends  ̃, ∫ fdg =  ̃ f = Λf. 

The proof of Theorem is completed. 

 

CHECK YOUR PROGRESS 

1. Prove - For any non-zero x0 ∈ X, there exists Λ ∈ X' such that Λx0 = 

||x0|| and ||Λ|| = 1. 

 

 

 

 

2. Define Riemann-Stieltjes sum   & Riemann-Stieltjes integrable. 

 

 

 

 

5.4 REFLEXIVE SPACES 

 

To any normed space X there associates another normed space, namely 

its dual X'. Since the dual space X' is again a normed space, one may 

consider the double dual space (X')' or simply X". It is interesting to 

observe that any vector in X can be viewed as a vector in X". 

Proposition 5.4.1. For x0 ∈ X, define a functional   ̃ on X' by 

 

                                            ̃ (Λ) = Λx0,   ∀Λ ∈ X'. 
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Then    ̃ ∈ X" and ||   ̃ || = ||x0||. The mapping J (called canonical 

identification or canonical 

embedding): x0 ↦    ̃ is a norm-preserving, linear map from X to X". 

 

Notice here ||x0|| is the norm of x0 in X and ||   ̃ || stands for the operator 

norm in X". 

Proof. Clearly, J : x0 ↦   ̃ is linear. From 

  

 

 

we also have    ̃∈ X" with operator norm ||   ̃|| ≤ ||x0||. By Corollary 

3.10 we pick Λ0 satisfying ||Λ0|| = 1 and Λ0x0 = ||x0||. Then 

  

 

 

so J is norm-preserving. 

A normed space is called a reflexive space if the canonical identification 

is a norm-preserving linear isomorphism. By Proposition 3.13 

subjectivity of the canonical map is sufficient for the space to be 

reflexive. Interestingly there are non-flexible Banach spaces with the 

property that there exists a norm preserving linear isomorphism from X 

to X". Of course, this isomorphism cannot be the canonical identification. 

It is an easy exercise to show that all finite dimensional normed spaces 

are reflexive. 

 

Proposition 5.4.2.  p
 (1 < p < ∞) is a reflexive space. 

 

Proof. For every T ∈ ( p
)0, there exists a unique y

T
 ∈  q

 such that T x = 

∑   
      for all x in  p.

 

Given Λ ∈ ( p
)", the linear functional given by Λ1y

T
 = ΛT is bounded in 

 q
.  

There exists some z ∈  p
 such that ΛT = Λ1y

T
 = ∑   

      for all yT in  q
. 

Recalling from the definition the canonical identification of z, z* (T ) = T 

z = ∑   
     .  
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By comparison we see that Λ = z∗, that is to say, the canonical 

identification is surjective, so `p is reflexive. 

 Likewise, the L
p
-space L

p
(X, µ) where (X, µ) is a measure space and p ∈ 

(1, ∞) is reflexive. This result, also known as Riesz representation 

theorem, is a standard one in real analysis, see, for instance, [Hewitt-

Stromberg] or [Rudin]. 

Before giving some non-reflexive spaces, we note two results which may 

be viewed as necessary conditions for reflexivity. 

Proposition 5.4.3. A reflexive space is a Banach space. 

Proof. We know that, the dual space of a normed space is a Banach 

space. As now X = (X')' is the dual of the normed space X', it must be 

complete. 

From this result, we see that (C[a, b], ||· ||p) is not reflexive for p ∈ [1, 

∞) since C[a, b] is not complete under the L
p
-norm. 

 

Proposition 5.4.4 . If X' is separable, then X is also separable. 

Proof. As X' is separable, the subset {Λ ∈ X' : ||Λ|| = 1} is also separable. 

Pick a countable dense set {Λk} in this subset. Using the definition of the 

operator norm, for each Λk we can find xk, ||xk|| = 1, such that Λkxk ≥ 1/2. 

Let E be the closure of the span of     
 . E is separable because all linear 

combinations of xk’s 

with coefficients in Q or Q + iQ form a countable dense subset in E. We 

shall finish the proof by showing E = X. 

For, if X \ E ≠ ∅ we pick x0 ∈ X \ E. We can find some Λ0 ∈ X' such that 

Λ0 = 0 on E, ||Λ0|| = 1. On the other hand, as {Λk} is dense, for any ε < 

1/2, there is some k0 such that ||Λ0 − Λk0|| < ε. It follows that for all x ∈ 

E, ||x|| = 1. 

 

 

 

 

 

Taking x = xk0, 
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contradiction holds. 

Using Proposition 3.16, we see that `1 is not reflexive. For, if it is, then 

( ∞ 
)' = ( 1

)00 =  1
. As  1

 

is separable,  ∞ 
 must be separable. Similarly it is not hard to show that 

the dual of C[a, b] is not separable, so C[a, b] is not reflexive. 

Reflexive spaces have many nice properties. They arise from many 

contexts, for instance, the Sobolev spaces W 
k,p

(ℝn
), 1 < p < ∞, are an 

indispensable tool in the modern study of partial differential equations. 

They reflexive and separable.  We point out three further properties of a 

reflexive space: 

 

 First, any closed subspace of a reflexive space is also a reflexive 

space.  

 

 Second, a Banach space is reflexive if and only if its dual is 

reflexive. The proofs of these two results are elementary and left as 

exercises.  

 

 Third, the best approximation problem always has an affirmative 

answer in a reflexive space. More precisely, let C be a closed, 

convex subset in this space and x0 a point lying outside C. Then 

there exists a point z0 in C such that ||x − z0|| ≤ ||x – z||for all z ∈ C.  

 

CHECK YOUR PROGRESS 

3. Establish two facts from the definition of Dual Space of Continuous 

function. 

 

 

 

4. State the properties of Reflexive Spaces 
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5.5 LET’S SUM UP 
 

All these theorems relate the space of continuous linear functionals to 

integrals with respect to the space of certain measures in different 

contexts. Riesz representation theorem is significant because it links up 

real analysis and functional analysis. 

5.6 KEYWORDS 
 

Isomorphism - The word derives from the Greek iso, meaning "equal," 

and morphosis, meaning "to form" or "to shape." Formally, 

an isomorphism is bijective morphism. Informally, an isomorphism is a 

map that preserves sets and relations among elements. 

Primitive Function - In calculus, an antiderivative, primitive 

function, primitive integral or indefinite integral of a function f is a 

differentiable function F whose derivative is equal to the 

original function f. 

Subinterval -  an interval that is a subset of a given interval. 

 

5.7 QUESTION FOR REVIEW 
 

1. Prove Fact 1 in Section 5.2 

2. Show that C[a, b] ⊂ Rg[a, b] for any monotone function g on [a, b]. 

3. Let g be an increasing function and  ̃ the right continuous function 

obtained from g. Prove that 

 

 

4. Prove that any BV -function g can be written as the difference of two 

increasing functions. This is Jordan decomposition theorem. At each x ∈ 

[a, b], define the increasing function Ng by 
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where the supremum is over all partitions of [a, x]. Show that Ng(y) ≥ 

Ng(x) + |g(x) − g(y)|, for y > x. 
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5.9 ANSWER TO CHECK YOUR 

PROGRESS 

 

1. Provide proof – 5.1.2 

2. Provide definition and representation – 5.2  

3. Provide statements of two facts with briefs – 5.2 

4. Provide statement given in the last section of  5.3.4. 
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UNIT 6: BOUNDED LINEAR 

OPERATOR I 
 

STRUCTURE 

6.0 Objective 

6.1 Introduction 

6.1 Bounded Linear Operators 

6.2 Examples of Linear Operators 

6.3 Baire Theorem 

6.4 Let’s Sum Up 

6.5 Keywords 

6.6 Question For Review 

6.7 Suggested Readings 

6.8 Answers to Check your Progress 

 

6.0 OBJECTIVE 
 

Understand the concept of Bounded Linear Operators 

Enumerate Examples of Linear Operators 

Comprehend Baire Theorem. 

6.1 INTRODUCTION 
 

We studied normed spaces in the previous three chapters. Now we come 

to bounded linear operators on these spaces. A bounded linear operator is 

the infinite dimensional analog of a matrix. The norm preserving linear 

isomorphism and the canonical identification studied the previous 

chapters are special cases of bounded linear operators. They are very 

special ones. Due to the complexity of the structure of infinite 

dimensional spaces, bounded linear operators are much more diverse and 

difficult to investigate than matrices, and yet there are many applications. 

After introducing basic definitions and properties in Section 1 and 

examining some examples in Section 2, we turn to two theorems, 
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namely, the uniform boundedness principle and the open mapping 

theorem. Together with Hahn-Banach theorem, they form the 

cornerstone of the subject. Nevertheless, unlike the Hahn-Banach 

theorem, both theorems depend critically on completeness. Being the 

infinite dimensional counterpart of the eigenvalues of a matrix, spectra 

play an important role in analyzing bounded linear operators. 

 

6.2 BOUNDED LINEAR OPERATORS 
 

 Let X and Y be two vector spaces over F. Recall that a map T : X → Y is 

a linear operator (usually called a linear transformation in linear algebra) 

if for all x1, x2 ∈ X and α, β ∈ F, 

 

    T(αx1 + βx2) = αT(x1) + βT(x2). 

 

The null space (or kernel) of T, N(T), is the set {x ∈ X : T x = 0} and the 

range of T is denoted by R(T). Both N(T) and R(T) are subspaces of X 

and Y respectively. 

 

The collection of all linear operators from X to Y forms a vector space 

L(X, Y ) under point wise  addition and scalar multiplication of functions. 

 

When X =  n
 and Y =  m

, any linear operator (or called linear 

transformation) can be represented by an m × n matrix with entries in F. 

The vector space L( n
,  m

) is of dimension mn. When X and Y are 

normed, one prefers to study continuous linear operators. T ∈ L(X, Y ) is 

continuous means it is continuous as a mapping from the metric space X 

to the metric space Y . It is called a bounded linear operator if it maps 

any bounded set in X to a bounded set in Y . By linearity, it suffices to 

map a ball to a bounded set.  

 

Proposition 6.2.1. Let T ∈ L(X, Y ) where X and Y are normed spaces. 

We have 

(a) T is continuous if and only if it is continuous at a point. 
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(b) T is bounded if and only if there exists a constant C > 0 such that 

     ||T x|| ≤ C||x||,  for all x. 

(c) T is continuous if and only if T is bounded. 

 

We denote the collection of all bounded linear operators from X to Y by 

B(X, Y ). It is a subspace of L(X, Y ). They coincide when X and Y are of 

finite dimension, of course. We observe that X' = B(X, F). The space B(X, 

Y ) not only inherits a vector space structure from X and Y but also a 

norm structure. 

 

For T ∈ B(X, Y ), define its operator norm by 

 

 

 

 

It is immediate to check that k·k makes B(X, Y ) into a normed space. 

Furthermore, for T ∈ B(X, Y ) and S ∈ B(Y, Z), the composite operator ST 

∈ B(X, Z) and 

     ||ST || ≤ ||S||||T||. 

 

Taking X = Y = Z, it means we have a multiplication structure on B(X) 

which makes B(X) a Banach algebra. Banach algebra is an advanced 

topic which has many applications in abstract harmonic analysis.  

The following proposition is useful in determining the operator norm. 

 

Proposition 6.2.2. Let T ∈ B(X, Y ). Suppose M is a positive number 

satisfying 

(a) ||Tx|| ≤ M||x||, for all x ∈ D where D is a dense set in X, and 

(b) there exists a nonzero sequence {xk} ⊂ D such that ||   
||/||xk|| → M 

. 

Then M = || T ||. 

Proof. For any x ∈ X, pick a sequence yk → x, yk ∈ D. Then  

 

   ||Tx|| = limk→∞ ||   
||≤ M limk→∞ ||yk|| = M||x||  
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shows that  

 

    ||Tx|| ≤ M||x||,   for all x ∈ X.  

 

By the definition of the operator norm, 

 

 

 

On the other hand, for the sequence {xk} given in (b), 

 

 

 

 

so M = ||T||. 

The following result, which generalizes Proposition 3.4, can be 

established in a similar way. 

 

Proposition 6.2.3. B(X, Y ) is a Banach space if Y is a Banach space. 

Let T ∈ B(X, Y ) where X and Y are normed spaces. Then T is called 

invertible if it is bijective with the inverse in B(Y, X). When X and Y are 

finite dimensional, every linear bijective map is automatically bounded, 

so it is always invertible. However, this is no longer true in the infinite 

dimensional setting. 

In many applications, some problem can be rephrased to solving the 

equation Tx = y in some spaces for some linear operator T . The 

invertibility of T means the problem has a unique solution for every y. 

Furthermore, for two solutions    
 = yi, i = 1, 2, the continuity of T 

−1 

implies the estimate ||x2 − x1||≤ C||y2 − y1||, C = ||T −1||, from which we 

see that the solution depends continuously on the given data. 

This is related to the concept of well-posedness in partial differential 

equations. 

The following general result is interesting. 

 

Theorem 6.2.4. Let T ∈ B(X, Y ) be invertible where X is a Banach 
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space. Then S ∈ B(X, Y ) is invertible whenever S satisfies ||I − T
 −1

S||, ||I 

− ST
−1

|| < 1. 

The conditions ||I − T
 −1

S||, and ||I − ST
−1

|| < 1 should be understood as 

a measurement on how 

S is close to T . The idea behind this theorem as follows. We would like 

to solve Sx = y for a given y. Rewriting the equation in the form Tx + (S 

− T )x = y and applying the inverse operator to get (I − E)x = T 
−1

 y 

where I is the identity operator on B(X, X) and E = T
 −1

(T − S) ∈ B(X, X) 

is small in operator norm. So the solution x should be given by (∑    
   ) 

T 
−1 

y as suggested by the formula (1 − x)
−1

 = ∑    
 ) for |x| < 1. 

Our proof involves infinite series in B(X, X). As parallel to what is done 

in elementary analysis, an infinite series ∑    
  ∈ (X, ||· ||), is convergent 

if its partial sums sn = ∑    
 
 form a convergent sequence in (X, || · ||). 

We note the following criterion, “M-Test”, for convergence. 

 

Proposition 6.2.5. An infinite series ∑    
  in the Banach space X is 

convergent if there exist ak ≥ 0 such that ||xk|| ≤ ak for all k and ∑    
  is 

convergent. 

Proof. We have 

 

 

 

and the result follows from the convergence of ∑    
  and the 

completeness of X. 

In particular, the series is convergent if there exists some ρ ∈ (0, 1) such 

that kxkk ≤ ρk for all k. 

 

Corollary 6.2.6. Let L ∈ B(X, X) where X is a Banach space with ||L||< 

1. Then I − L is invertible with inverse given by 

 

 

 

Proof. By assumption, there exists some ρ ∈ (0, 1) such that ||L|| ≤ ρ. 

From ||L
k
||≤ ||L||

k
≤ ρk and Proposition 6.1.5  that ∑     

     converges in 

B(X, X). Moreover, 
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Similarly, ∑     
    (I − L) = I. 

Proof of Theorem 6.2.4. We adopt the notations in the above paragraph. 

As ||E|| < 1 by assumption, Corollary 6.1.6 implies that ∑     
    is the 

inverse of I −E. Letting x = (∑     
   )T 

−1
 y, then (I −E)x = T 

−1 
y, that is, 

Sx = y. We have shown that S is onto. Also it is bounded. On the other 

hand, from 

 

 

 

we have 

 

 

 

 

 

So S has a bounded inverse. We have completed the proof of this 

theorem. 

As an application let us show that all invertible linear operators form an 

open set in B(X, Y ) when X is complete. Let T0 be invertible. Then for 

each T satisfying ||T − T0|| < ρ ≡ 1/||T0 −1||, we have 

     ||I −   
  T || ≤ ||  

  1||||T0 − T || < 1,  

 

so by this theorem T is invertible. That means the ball Bρ (T0) is 

contained in the set of all invertible linear operators, and consequently it 

is open. For an n × n-matrix, its corresponding linear transformation is 

invertible if and only if it is nonsingular. Again a matrix is nonsingular if 

and only if its determinant is non-zero. As the determinant is a 

continuous function on matrices (as the space Fn2), for all matrices close 

to a nonsingular matrix their determinants are non-zero, so all 

nonsingular matrices form an open set in the vector space of all n ×n-

matrices. Theorem 6.1.4 shows that this result holds in general. 
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A main theme in linear algebra is to solve the nonhomogeneous linear 

system 

       Ax = b, 

where A is an m ×n matrix and b ∈ Rm are given. The Fredholm 

alternative states that either this linear system is uniquely solvable, or the 

homogeneous system 

       A'y = 0, 

has nonzero solutions y, where A0 is the transpose matrix of A. 

Moreover, when this happens, the non-homogeneous system is solvable 

if and only if b is perpendicular to all solutions y of the homogeneous 

system. Can we extend this beautiful result to linear operators in Banach 

spaces? We need to answer the following question before we can 

proceed, namely, how do we define the transpose of a linear operator? 

 

For a bounded linear operator T from the normed space X to another 

normed space Y there associates with a linear operator T' from Y' to X' 

called the transpose of T. Indeed, we define T' by 

 

 

 

It is straightforward to prove the following result. 

 

Proposition 6.2.7. Let T'  be defined as above. Then 

(a) T' is a bounded linear operator from Y' to X'. Furthermore, ||T'|| = 

||T||. 

(b) The correspondence T → T'  is linear from B(X, Y ) to B(Y', X'). 

(c) If S ∈ B(Y, Z) where Z is a normed space, then (ST )' = T'S'. 

 

We examine the finite dimensional situation. Let T be a linear operator 

from  n
 to  m

. Let {ej} and {fj} be the canonical bases of  n
 and  m

 

respectively. We have Tx = ∑   
     where x = ∑      , so T is 

represented by the matrix m × n-matrix (   
). On the other hand, we 

represent T' as a matrix with respect to the dual canonical bases {  
 } and 

{  
 } } as T'y' = ∑   

    
  where y' =∑     

 
 .  
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From the relation T 'y'(ej) = y'(   
) for all j we have    

 =    . Thus the 

matrix of T' is the transpose of the matrix of T . This justifies the 

terminology. In some books it is called the adjoint of T . Here we shall 

reserve this terminology for a later occasion. 

There are close relations between the ranges and kernels of T and those 

of its transpose which now we explore. Recall that the kernel of T ∈ B(X, 

Y) is given by N(T ) = {x ∈ X : Tx = 0.} and its rangeis R(T  ) ≡ T (X). 

The null space is always a closed subspace of X and R(T) is a subspace of 

Y , but it may not be closed. 

For a subspace Y of the normed space X, we define its annihilator to be 

 

 

 

Similarly, for a subspace G of X', its annihilator is given by 

 

  

 

It is clear that the annihilators in both cases are closed subspaces, and the 

following inclusions hold: 

 

 

Lemma 6.2.8. Let X be a normed space, Y a closed 

subspace of X and G a closed subspace of X0. Then 

(a)      Y =⊥ (Y⊥) ;  

(b) in addition, if X is reflexive, 

     G = (⊥G)⊥. 

 

Proof. (a) It suffices to show ⊥ (Y⊥) ⊂ Y . Any x0 ∈ ⊥(Y⊥) satisfies Λx0 = 

0 whenever Λ vanishes on Y . x0 belongs to Y . 

(b) It suffices to show ⊥ (G⊥) ⊂ G. Any Λ1 ∈ (⊥G)⊥ satisfies Λ1x = 0 for 

all x ∈⊥ G. If Λ1 does not belong to G, as G is closed and the space is 

reflexive, there is some x1 ∈ X such that Λ1x1 ≠ 0 and x1 ∈⊥G 

contradiction holds. 
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Proposition 6.1.9. Let X and Y be two normed spaces and T ∈ B(X, Y ). 

Then we have 

 

 

 

 

 

 

 

Proof. T'y0' = 0 means T'y0' (x) = 0 for all x ∈ X. By the definition of the 

transpose of T we have y0' (Tx) = 0 for all x. Since T is continuous, y0'∈ 

     ̅̅ ̅̅ ̅̅ ̅⊥. We conclude that N(T') ⊂      ̅̅ ̅̅ ̅̅ ̅⊥. By reversing this reasoning 

we obtain the other inclusion, so the first identity holds. The second 

identity can be proved in a similar manner. The third and the fourth 

identities are derived from the first and the second after using the 

previous lemma. It is clear that we have 

 

Corollary 6.2.10. Let X and Y be normed and T ∈ B(X, Y ). Then R(T ) is 

dense in Y if and only if T'is injective. The significance of this result is 

evident. It shows that in order to prove the solvability of the equation Tx 

= y for any given y ∈ Y , it suffices to show that the only solution to T'y' 

= 0 is y' = 0. This sets up a relation between the solvability of the 

equation Tx = y and the uniqueness of the transposed equation T'x = 0. 

Fredholm alternative can be established for linear operators with more 

structure. For instance, in Chapter 6 we will show that it holds for T = Id 

+ K where K is a compact operator on a Hilbert space. 

 

6.3 EXAMPLES OF LINEAR OPERATORS 
 

There are plenty linear operators in analysis. Here we discuss some 

examples. 

Linear operators on sequence spaces are direct generalization of linear 

transformations on  n
. Let 

x = (x1, x2, · · · ) be a sequence. Then Tx = (y1, y2, · · · ) is again a 
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sequence whose entries yk depends linearly on x. You may write it 

formally as 

  

 

 

Depending on which sequence space and the growth on the coefficients 

cjk, T defines a bounded linear operator or an unbounded one. 

Let us consider two cases. First, let {aj} be a null sequence with nonzero 

terms and define a linear operator from  p 
to itself by Tx ≡ (a1x1, a2x2, · 

· · , ). It is clear that |Tx|p ≤ ||a||∞||x||p so T is bounded. 

However, it is not invertible because its inverse is not bounded. To see 

this, assume T −1 exists. But then T 
−1

 ej =   
  ej which implies that | 

  
  |’s are uniformly bounded, contradicting that {aj} is null. 

Second, the shift (to the right) operator SR :  p ↦  p 
(1 ≤ p ≤ ∞) given by 

 

 

 

 

It is easily checked that SR ∈ B( p
,  p

) and kSRk = 1 . Obviously SR is 

not onto, so it is not invertible. 

 

 

 

Now, we consider integral operators. These operators arise as the inverse 

operators for differential operator as well as convolution operators. We 

restrict our attention on the one dimensional situation. 

Fix a continuous function K ∈ C([a, b] × [a, b]) (usually called the 

integral kernel) and define 

Clearly I is linear. Let’s show that it is also bounded on C[a, b]. In fact, 

 

 

 

 

where M = supx ∫         
 

 
 dy. So ||I || ≤ M. By some careful work, one 

can show that ||I|| is equal to M precisely. 
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Integral operators can also be defined in other spaces. To do this we note 

the following lemma. 

 

Lemma 6.3.1. Let X and Y be Banach spaces and T is a linear operator 

from X1 to Y where X1 is a dense subspace of X. Suppose that there is a 

constant C such that 

     

      ||Tx|| ≤ C||x||, for all x ∈ X1.  

 

Then T can be uniquely extended to a bounded linear operator from X to 

Y whereas the above estimate holds on X. 

 

We shall make no difference between T and its extension. We apply this 

lemma to the Lp-spaces. From the estimate 

 

we see that I can be extended to become a bounded linear operator on 

Lp[a, b] by the lemma. Although the integral 

 

 

 

may not make sense for the “ideal points” in L
p
[a, b], it is customary to 

denote it by the same expression for all points in this space. 

In passing one should note that the abuse of notation I ; I f first stands for 

f ∈ C[a, b] but then for its extension in L
p
(a, b) for all p. 

What is the transpose of I ? Let us determine it on L2(a, b). From real 

analysis we know that this space is self-dual, that is, any bounded linear 

functional on L2(a, b) is given by 
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for some g ∈ L
2
(a, b), that is, the map Φ : L

2
(a, b) → L

2
(a, b)' given by g 

↦ Λg is a norm-preserving linear isomorphism. Now, from the definition 

for the transpose, 

 

 

where 

 

 

 

Hence I'Λg = Λh. Since L2(a, b)0 may be identified with L
2
(a, b) via Φ, 

the transpose of   may be viewed as a map on L2(a, b) to itself given by 

 

 

 

In particular, I = I' when K(x, y) is symmetric in x and y. 

Now given a continuous function f in C(S1) (the space of all continuous, 

2π−periodic functions) we can define a sequence of complex numbers by 

its Fourier coefficients 

 

 

 

 

The Parseval identity 

 

 

 

shows that the linear operator F : (C(S
1
), || · ||2) →  2

(ℤ) assigning f to 

{cn} can be extended to become a norm preserving linear isomorphism 

from L
2
(S

1
) to  2

. In particular, F is invertible. This result partly justifies 

the assertion that a function is determined by its Fourier series. In the 

study of the well-posedness of solutions of partial differential equations 

we encounter numerous linear operators. This provides opportunity to 

apply the soft method of functional analysis to partial differential 

equations. Very often it is crucial to find the most appropriate spaces for 

the differential operator or its inverse operator to act on. 
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Finally, let’s consider the differential operator. Let X be the subspace of 

C[0, 1] consisting of continuous differentiable functions. The differential 

operator d/dx maps X to C[0, 1]. It is linear but unbounded. 

Taking fk = sin kx, ||dfk/dx||∞ = ||k cos kx||∞ = k → ∞, but ||fk||∞ = 1.. 

CHECK YOUR PROGRESS 

1. Define Bounded Linear Operator 

 

 

 

2. What is annihilator? 

 

 

 

6.4 BAIRE THEOREM 
 

In the next two sections we shall discuss the uniform boundedness 

principle and the open mapping theorem both due to Banach. The 

underlying idea of the proofs of these theorems is the Baire theorem for 

complete metric spaces. 

The motivation is somehow a bit strange at first glance. It is concerned 

with the decomposition 

of a space as a union of subsets. For instance, we can decompose the 

plane ℝ2
 as the union of strips ℝ2

 =  ⋃    ∈  where Sk = (k, k + 1] × ℝ. 

In this decomposition each Sk is not so sharply different from ℝ2
 Aside 

from the boundary, the interior of each Sk is just like the interior of R2. 

On the other hand, one can make the more extreme decomposition: ℝ2
 = 

⋃    ∈ℝ  where lα = {α} × ℝ. Each lα is a vertical straight line and is 

very different from ℝ2
. It is simpler in the sense that it is one-

dimensional and has no area. The sacrifice is now we need an 

uncountable union. The question is: Can we represent ℝ2
 as a countable 

union of these sets (or sets with lower dimension)? It turns out that the 

answer is no. The obstruction comes from the completeness of the 

ambient space. 
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We need one definition. Let (X, d) be a metric space. A subset E of X is 

called nowhere dense if its closure does not contain any metric ball. 

Equivalently, E is nowhere dense if X \ E is dense in X. Note that a set is 

nowhere dense if and only if its closure is nowhere dense. The following 

result is called Baire theorem. 

Theorem 6.4.1. Let {Ek}∞ 1 be a sequence of nowhere dense subsets of 

(X, d) where (X, d) is complete. 

 

Then X \ S Ek is dense in X. 

In particular, this theorem asserts that it is impossible to express a 

complete metric space as a countable union of nowhere sets. In 

applications, we often use it in the following form: Suppose X = 

∖⋃  .Then at least the closure of one of the Ek’s has non-empty 

interior. An equivalent formulation is also useful: The intersection of 

countably many open dense sets in a complete metric space is again a 

dense set (though not necessarily open.) 

 

Lemma 6.4.2. Let { ̅j} be a sequence of closed balls in the complete 

metric space X which satisfies  ̅j+1 ⊂  ̅j and diam  ̅j → 0. Then 

   ̅
 
    consists of a single point. 

Proof. Pick xj from Bj to form a sequence {xj}. As the diameters of the 

balls tend to zero, {xj} is a Cauchy sequence. By the completeness of X, 

{xj} converges to some x*. Clearly x* belongs to all Bj and is unique. 

Proof of Theorem 6.1.10. By replacing Ej by its closure if necessary, we 

may assume all Ej’s are closed sets. Let B0 be any ball. We want to show 

that B0 T(X \ Sj Ej) ≠ ∅. 

As E1 is nowhere dense and closed, we can find a closed ball  ̅1 ⊂ B0 

such that  ̅1 ∩ E1 = ∅ and its diameter d1 ≤ d0/2, the diameter of B0. 

Next, as E2 is nowhere dense and closed, by the same 

reason there is a closed ball  ̅2 ⊂ B1 such that  ̅2  ∩ E2 = ∅ and d2 ≤ 

d1/2. Repeating this process, we obtain a sequence of closed balls  ̅j 

satisfying (1)     
̅̅ ̅̅ ̅̅  ⊂  ̅j, (2) dj ≤ d0/2

j
, and (c)  ̅j is disjoint from E1, · · · 

, Ej. By Lemma 6.3.2 there is a point x* in the common intersection of 

all Ej’s. As x* ∈  ̅j for all j, x* ∈ B0 \ ∪j Ej. 

Baire theorem has many interesting applications.  



Notes 

100 

Proposition 6.3.3. Any basis of an infinite dimensional Banach space 

contains uncountably many vectors. 

Proof. First we claim any finite dimensional subspace of an infinite 

dimensional normed space is nowhere dense. Let E be such a subspace. 

As it is finite dimensional, it is closed. (Why?)  

Pick x0 ∈ X\E, ||x0|| = 1 (such x0 exists because X is of infinite 

dimensional). For any x ∈ E and ε > 0, the point xε = x + εx0 ∈ X \ E and 

||x – xε|| < ε, so E = E does not contain any ball. 

Let B be a countable basis of X, B =       
 . By the definition of a basis, 

 

 

 

But this is impossible according to Baire theorem! 

 

CHECK YOUR PROGRESS 

3. State and prove Bairre’s Theorem 

 

 

 

4. Enumerate - Any basis of an infinite dimensional Banach space 

contains uncountably many vectors. 

 

 

 

6.5 LET’S SUM UP 
 

We concluded that the intersection of countably many open dense sets in 

a complete metric space is again a dense set (though not necessarily 

open.) . In the study of the well-posedness of solutions of partial 

differential equations we encounter numerous linear operators. This 

provides opportunity to apply the soft method of functional analysis to 

partial differential equations. Very often it is crucial to find the most 
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appropriate spaces for the differential operator or its inverse operator to 

act on. 

 

6.6 KEYWORDS 
 

Solvable - solvable may refer to: Solvable group, a group that can be 

constructed by compositions of abelian groups, or equivalently a group 

whose derived series reaches the trivial group in finitely many steps. 

Perpendicular - Perpendicular means "at right angles". A line meeting 

another at a right angle, or 90° is said to be perpendicular to it.  

Transpose - To transpose something do the oppsite operation on it when 

carrying it across the equal sign.  

 

6.7 QUESTION FOR REVIEW 
 

1. Prove that B(X, Y ) is a Banach space when Y is a Banach space. 

2. Show that in a complete metric space (X, d), the intersection of 

countably many open, dense 

subsets is still a dense set. 

3. Let T ∈ B(X, Y ) where X is a Banach space and Y is normed. Suppose 

there exists C > 0 such that 

 

Show that 

(a) R(T ) is a complete subspace of Y , and 

(b) T ∈ B(X, R(T )) is invertible. 
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6.9 ANSWER TO CHECK YOUR 

PROGRESS 
 

1. Provide explanation – 6.1  

2. Provide explanation  and representation – 6.1.7 

3. Provide statement and proof -6.3.1 

4. Provide proof – 6.3.3 
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UNIT 7: BOUNDED LINEAR 

OPERATOR I 
 

STRUCTURE 

7.0Objective 

7.1 Introduction 

7.2 Uniform Boundedness Principle 

7.3 Open Mapping Theorem 

7.4 The Spectrum  

7.5 Let’s Sum Up 

7.6 Keywords 

7.7 Questions For Review 

7.8 Suggested Readings 

7.9 Answers to Check your Progress 

 

7.0 OBJECTIVE 
 

Understand the concept of Uniform Boundedness Principle 

Comprehend Open Mapping Theorem 

Enumerate the concept of Spectrum 

7.1 INTRODUCTION 
 

In functional analysis, a bounded linear operator is a linear 

transformation L between normed vector spaces X and Y for which the 

ratio of the norm of L(v) to that of v is bounded above by the same 

number, over all non-zero vectors v in X. In other words, there exists 

some such that for all v in X. 

7.2 UNIFORM BOUNDEDNESS 

PRINCIPLE 
 

The following uniform boundedness principle is also called Banach-
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Steinways theorem as a tribute to its discoverers. Steinhaus was the 

teacher of Banach. 

Theorem 7.2.1. Let   be a family of bounded linear operators from a 

Banach space X to a normed space Y . Suppose that   is pointwisely 

bounded in the sense that for all x, there exists a constant Cx such that 

||Tx|| ≤ Cx for all T ∈   . Then we can find a constant M such that ||T || ≤ 

M, for all T ∈  . 

Proof. Let Ek = {x ∈ X : ||Tx|| ≤ k, for all T ∈   }. We observe that 

 

 

 

This is simply because for any x ∈ X, ||Tx|| ≤ Cx by assumption. Hence x 

∈ Ek for all k ≥ Cx. Clearly each Ek is closed. By Baire theorem there is 

some Ek0 which contains a ball B. It follows from the lemma below that 

||T|| ≤ M, for all T ∈   . 

 

Lemma 7.2.2. Let T ∈ L(X, Y ) where X and Y are normed spaces. 

Suppose that ||TBρ(x0)|| ≤ C. Then ||T || ≤ 2C/ρ
−1

. 

 

Proof. As Bρ(0) = Bρ(x0) − x0, by linearity, we have 

 

 

 

 

 

Uniform boundedness principle does not hold when the completeness of 

X is removed. 

An alternative formulation of this principle is sometimes quite useful. A 

vector x0 is called a resonance point for a family of bounded linear 

operators   if     ∈    ||Tx0||= ∞. 

Theorem 7.2.3. Let T be a family of bounded linear operators from X to 

Y where X is a Banach space and Y is a normed space. Suppose that 

    ∈    ||T || = ∞. Then the resonance points of T forms a dense set in X. 
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Proof. Suppose resonance points are not dense. There exists a ball Bρ(x0) 

on which T is pointwisely bounded, that’s, for all x ∈ Bρ(x0) ||Tx|| ≤ Cx, 

for all T ∈ T . For any x ∈ X, z = ρx/||x||+x0 ∈ Bρ(x0) 

 

 

 

Implies 

 

So T is point wisely bounded on the whole X. By Banach-Steinways 

theorem, ||T ||≤ M for all T . But this is impossible by assumption. Recall 

that for any Riemann integrable function f of period 2π, its Fourier series 

is given by 

 

 

 

 

 

 

 

 

We list the following facts (see, for instance, Stein and Shakarchi 

“Fourier Analysis”): 

(1) The n-th partial sum Snf of the Fourier series 

 

 

 

 

has a closed form 
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(2) It is believed that the formula 

 

 

 

 

Should hold for “sufficiently nice functions”. 

 

(3) Taking f0(x) = 1 (0 ≤ x ≤ π) and f0(x) = 0 (−π ≤ x < 0) and extend it 

periodically in ℝ. The 

Fourier series of f0 is 

 

 

 

We have f0(0) = 0 but the value of the Fourier series at 0 is 1 2. This 

shows that “sufficiently nice functions” should exclude discontinuous 

ones. 

(4) For any Lipschitz continuous, 2π-periodic function f, its Fourier 

series converges uniformly to f everywhere. For continuous 2π-periodic 

functions it took some time to produce an example, see [Stein-Shakarchi] 

for an explicit construction. 

Here we present a soft proof of a stronger result. Denote by C(S
1
) the 

vector space of all continuous, 2π-periodic functions. It can be identified 

with {f ∈ C[−π, π] : f(−π) = f(π)}, which is a closed subspace of C[−π, π] 

under the sup-norm. 

 

Theorem 7.1.4 . The subset {f ∈ C(S
1
) : The Fourier series of f diverges 

at 0} is dense in C(S1). In particular, f is not equal to its Fourier series at 

0. 

Proof. We note that each partial sum f ↦ Snf may be regarded as a linear 

operator, so composing with the evaluation at 0, Λnf = (Snf)(0), or 
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forms a bounded linear functional on C(S
1
). 

From the closed form of the partial sums we have 

 

 

 

The integral kernel K(x) = sin((n + 1/2)x)/ sin x/2 is continuous provided 

we set K(0) = 2n + 1. Its operator norm is equal to 

 

 

 

by the lemma below. We claim that supn ||Λn|| = ∞. This is done by a 

direct computation: 

 

as n → ∞. By Theorem 4.17, resonance points are dense in C(S1). 

However, resonance points are precisely those functions in C(S1) whose 

Fourier series diverges at 0. 

Lemma 7.2.5. Let 

 

 

 

where g ∈ C[a, b]. Then Λ ∈ C[a, b]0 with 
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Proof. This lemma could be proved by Riesz representation theorem. 

However, a direct proof is preferred. 

Clearly we have 

 

 

 

for all f, ||f||∞ ≤ 1. We need to establish the reverse inequality. 

 

First assume that g is a polynomial p. Let Ik and Jk be open subintervals 

on which p is positive and negative respectively. For each small ε > 0, let 

I'k and J'k be subintervals of Ik and Jk respectively so that the distance 

between I'k (resp. J'k) and the endpoints of Ik (resp. Jk) is equal to ε. 

Define a function fε ∈ C[a, b] by setting it to be 1 on I'k, −1 on J'k, 0 at 

endpoints of Ik and Jk and linear in between. 

 

Then fε ∈ C[a, b] with ||fε||∞ = 1. 

 

or some constant C independent of ε.  

 

 

 

when g is the polynomial p. By an approximation argument, this 

inequality also holds for every continuous g. 

We end this section with a discussion on soft and hard methods in 

analysis. Very often a theorem 

can be proved by two methods of very different nature. As a first 

example, consider the existence of transcendental numbers. Recall that 

an algebra number is a number that is a root for some polynomial in 

rational coefficients and a number is a transcendental number if it is not 

algebraic. In history the first transcendental number was found by 

Liouville (1844) who proved that Pj 10−j! is transcendental. The 

transcendentality of e and π were established by Hermite (1873) and 
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Lindemann (1882) respectively. However, using Cantor’s theory of 

cardinality, it is easily shown that all algebraic numbers form a countable 

set. Since R is uncountable, the set of all transcendental numbers is equal 

to R minus all algebra numbers and therefore is uncountable. The soft 

method shows there are infinitely many transcendental numbers, but it 

cannot pinpoint which one is transcendental. In the previous section we 

discussed Baire theorem. As an application of this theorem, in the 

exercise you are asked to show that all continuous, 

nowhere differentiable functions are dense in C[0, 1]. In 1872, 

Weierstrass caused a sensation in math community by constructing such 

functiond explicitly. This class of functions are given by 

 

 

 

where a ∈ (0, 1), b an odd integer, ab > 1 + 3π/2. Again the soft method 

cannot give you any explicit example.  

Finally, in the above discussion we proved that the collection of all 

periodic, continuous functions whose Fourier series are divergent at 0 is 

a dense subset of C(S1), but again we cannot tell which one belongs to 

this collection. You need to find it in a hard way. 

 

7.3 OPEN MAPPING THEOREM 
 

The open mapping theorem asserts that a subjective bounded linear 

operator from a Banach space to another Banach space must be an open 

map. This result is uninteresting in the finite dimensional situation, but 

turns out to be very important for infinite dimensional spaces. From 

history there were several concrete, relevant results in various areas, 

Banach had the insight to single out the property as a theorem. 

 

A map f : (X, d) ↦ (Y, ρ) between two metric spaces is called an open 

map if f(G) is open in Y for any open set G in X. This should not be 

confused with continuity of a map, namely, f is continuous if f 
−1

(E) is 

open in X for any open set E in Y . As an example, let us show that every 

non-zero linear functional on a normed space X is an open map. Indeed, 
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pick z0 ∈ X with Λz0 = 1. Such point always exists when the functional Λ 

is non-zero. For any open set G in X, we claim that ΛG is open. Letting 

Λx0 ∈ ΛG, as x0 ∈ G and G is open, there exists some R > 0 such that 

BR(x0) is contained in G. Then x0 + rz0 ∈ BR(x0) for all r ∈ (−R, R) and 

Λ(x0 + rz0) = Λx0 + r imply that (Λx0 + R, Λx0 − R) ∈ ΛG, so ΛG is 

open. 

Before stating the theorem, let’s state a necessary and sufficient 

condition for a linear operator to be open. 

 

Lemma 7.2.1. Let T ∈ L(X, Y ) when X and Y are normed spaces. T is 

an open map if the image of a ball under T contains a ball. 

Roughly speaking, a linear operator either has “fat” image or it collapses 

everywhere. 

Proof. We use “D” instead of “B” to denote a ball in Y. Suppose there 

exists     (Tx1) ⊂ TBR0(x0) for some x1 ∈ BR0(x0). By linearity, 

 

 

 

 

 

 

Let G be an open set in X. We want to show that TG is open. So, for Tx0 

∈ TG, x0 ∈ G, as G is open, we can find a small ρ > 0 such that Bρ(x0) ⊂ 

G. From the above inclusion, 

 

 

 

 

 

Theorem 7.2.2. Any surjective bounded linear operator from a Banach 

space to another Banach space is an open map. 

Unlike the uniform boundedness principle here we require both the 

domain and target of the linear operator be complete. 

Proof. Step 1: We claim that there exists r > 0 such that 
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For, as T is onto, we have 

 

 

 

 

By assumption Y is complete, so we may apply Baire theorem to 

conclude that      (0) contains a ball for some j0, i.e., 

 

 

 

Since      (0) is dense in      (0), by replacing Dρ(y0) by a smaller ball 

if necessary, we may assume y0 = Tx0, for some x0 ∈     (0). Then 

 

 

 

 

 

 

Step 2: Dr(0) ⊂ TB3(0). 

First, note by scaling, 

 

 

 

Letting y ∈ Dr(0), we want to find x∗ ∈ B3(0), T x∗ = y. We will do this 

by constructing an approximating sequence. 

For ε = r/2, from (1) with n = 0, there exists x1 ∈ B1(0) such that 

 

 

 

As y − T x1 ∈ D r/2 (0), for ε =
 

  , from (1) with n = 1, there exists x2 ∈ B 

1/2(0) such that 

 

 

 

Keep doing this we get {xn},  
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such that 

 

 

Let’s verify that {zn} is a Cauchy sequence in X. ∀n, m, m < n, 

 

 

 

 

as m → ∞. From the completeness of X we may set z∗ = limn→∞ zn. 

Let’s check that z∗ ∈ B3(0) and T z* = y. For, 

 

 

 

So z* belongs to the closure of B2(0), or, in B3(0). Next, 

 

 

 

 

as n → ∞, so y = T z. 

 

We have shown that the image of the ball B3(0) under T contains the ball 

Dr(0), and the desired conclusion follows from Lemma 7.1.3. Recall that 

a linear operator is invertible if it is bounded, bijective and with a 

bounded inverse. The following theorem shows that the boundedness of 

the inverse comes as a consequence of boundedness and surjectivity of 

the operator when working on Banach spaces. This is called the Banach 

inverse mapping theorem. 

 

Corollary 7 .3.3. Let T ∈ B(X, Y ) be a bijection where X and Y are 

Banach spaces. Then T is invertible. 
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Proof. It suffices to show that the inverse map T −1 is bounded. From 

the above proof Dr(0) ⊂ T B3(0) holds. As T is bijective, T 
−1

(Dr(0)) ⊂ 

B3(0). In other words, T 
−1

 maps a ball in Y to a bounded set in X, so T 
−1 

is bounded. 

A theorem in general topology asserts that a continuous bijection from 

ℝn
 to ℝn

 must have a continuous inverse, that is, it is a homeomorphism. 

This property does not hold for continuous maps in a general Banach 

space. However, it remains to be valid when the map is a bounded linear 

operator. 

A standard application of the open mapping theorem is the closed graph 

theorem. By definition a 

linear operator T between normed spaces X and Y is called a closed map 

or of closed graph if the graph of T , G(T ) ≡ {(x, Tx) : x ∈ X} ⊂ X × Y, 

is a closed set in the product normed space X × Y . Observe that X × Y is 

also a subspace of X × Y . 

An alternative definition is, T is closed if whenever xn → x and Txn → y, 

we have y = Tx. From the definition one sees immediately that any 

bounded linear operator is a closed map. But the converse is not always 

true. As an exercise you may check that the differential operator is a 

closed map; but we already showed that it is unbounded. The following 

closed graph theorem provides an efficient way to verify the 

boundedness of a linear operator. 

 

Theorem 7.3.4 . Any closed map from a Banach space to another 

Banach space is bounded. 

Proof. Let T be a closed map in L(X, Y ) where X and Y are Banach 

spaces. Since X × Y is complete and G(T ) is closed in X × Y by 

assumption, G(T ) is also a Banach space. We consider the linear map P 

which is simply the projection of G(T ) to X: P (x, Tx) = x. Clearly P is 

bijective. From the relation 

 

 

 

we see that P belongs to B(G(T ), X). By the above corollary we conclude 

that P 
−1 

is bounded. There exists some constant C such that 
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In particular, we have ||Tx|| ≤ C||x||. 

With more effort, one can deduce the open mapping theorem from the 

closed graph theorem. So these two results are in fact equivalent. 

CHECK YOUR PROGRESS 

1. State Uniform Boundness Principle 

 

 

 

2. State and prove Banach inverse mapping theorem 

 

 

 

7.4 THE SPECTRUM 

 

Denote by B(X) = B(X, X) the vector space of all bounded linear 

operators from the normed space X to itself. It is a normed space under 

the operator norm, and it is a Banach space when X is a Banach space. 

An additional algebraic operation, namely, the composition of two linear 

operators, makes sense in B(X). In fact, we note that 

 

(i) the identity map I is well-defined in B(X); 

(ii) for all T, S ∈ B(X), TS ∈ B(X) and ||TS|| ≤ ||T||||S||. 

 

B(X) is the prototype for Banach algebras. When the space is of finite 

dimension, one may regard it as  n
, so any linear operator is essentially a 

square matrix. In the theory of square matrices eigenvalues and 

eigenvectors are of central importance. In general, it is possible to define 

the same notion for linear operators in B(X). A scalar λ is called an 

eigenvalue for T in L(X, X) if there exists a nonzero x, called an 

eigenvector, such that  
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       Tx = λx. 

As before, it is readily checked that all eigenvectors form a subspace 

together with 0. It is closed when X is normed and T is bounded. 

In the following we let X be a Banach space and the linear operator T 

bounded for simplicity, although much of the discussion could be 

extended to more general settings. Recall that a bounded linear operator 

S in B(X) is called invertible if it is bijective and S−1 belongs to B(X). 

According to the open mapping theorem, S is invertible if and only if it is 

bijective.  

A scalar λ ∈   is called a regular value for a bounded linear operator T 

if T − λI is invertible. The set of all regular values of T forms the 

resolvent set of T , denoted by ρ(T ), and we define its complement, 

that’s,   \ ρ(T ), the spectrum of T and denote it by ζ(T ). Both 

terminologies are motivated by their connection with physics. 

We point out that any eigenvalue λ of the bounded linear operator T must 

belong to the spectrum of T. Indeed, the existence of an eigenvector 

shows that T −λI is not injective, hence cannot be invertible. When the 

space is finite dimensional, a linear operator is injective if and only if it 

is surjective. Consequently, the spectrum of any linear operator consists 

exactly of eigenvalues. However, this is no longer the case for infinite 

dimensional spaces. For T on a Banach space, T − λI fails to be invertible 

for two reasons; either it is not injective or not surjective. The scalar λ is 

an eigenvalue when the former holds. An example may be helpful in 

illustrating the situation.  

 

Let X = C[0, 1] over the real field and consider the linear operator T 

given by (T f)(x) = xf(x). 

Clearly, T ∈ B(C[0, 1]) with ||T || ≤ 1. If λ is an eigenvalue of T , and ϕ 

its eigenfunction, xϕ(x) = λϕ(x) will hold for all x ∈ [0, 1]. This is clearly 

impossible, so T does not have any eigenvalue. However, for any λ not in 

[0, 1], the inverse of T − λI is given by the map 
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It is easy to check that S ∈ B(C[0, 1]). When λ ∈ [0, 1], the inverse of T 

−λI does not exist. We conclude that although T has no eigenvalues, its 

spectrum is given by ζ(T ) = [0, 1] and resolvent set by C/[0, 1]. 

 

Proposition 7.2.1 . Let T ∈ B(X) where X is a Banach space. Then I − T 

is invertible when ||T|| < 1. 

Corollary 7.2.2 The spectrum of T ∈ B(X) where X is a Banach space 

forms a closed and bounded set in F. In fact, |λ| ≤ ||T || for any λ ∈ ζ(T ). 

 

Proof. If λ does not belong to ζ(T ), that is, T − λI is invertible. There 

exists ρ > 0 such that all linear operators in Bρ(T − λI) are invertible. In 

particular, it means T − µI, |λ − µ| < ρ, is invertible. This shows that the 

complement of ζ(T ) is open, hence ζ(T ) is closed. Next, if |λ| > ||T ||, 

then I − λ
−1

 T and hence T − λI are invertible by Proposition 4.21. Hence 

λ cannot be in the spectrum. 

Evidently there is a natural question: Is the spectrum nonempty for any 

bounded linear operator 

in B(X)? After all, there are n many eigenvalues (including multiplicity) 

for any n × n- matrix with complex entries. Remember that the proof of 

this fact depends on the fundamental theorem of algebra which is most 

easily established by using the Liouville theorem in complex analysis. It 

is not surprising we need to use complex analysis to establish the 

following two results over C: 

First, ζ(T ) is always nonempty for any T ∈ B(X); 

Second, we have the formula for the “spectral radius”: 

 

 

 

Theorem 7.2.2. Let T ∈ B(X) where X is a complex Banach space. Then 

 

(a) ρ(T ) is open in C. More precisely, for any λ0 ∈ ρ(T ), λ ∈ ρ(T ) for |λ 

− λ0| < 1/||(λ0I − T )
−1

||. 

(b) For each Λ ∈ B(X)', the function ϕ(λ) = Λ(λI − T )
−1

 is analytic in 

ρ(T). 

(c) ζ(T ) is a non-empty compact set in the plane. 
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Proof. (a) Follows immediately from Theorem 4.4 after taking T = λ0I − 

T and S = λI − T in that theorem. 

(b). To show analyticity we represent ϕ(λ) as a power series around every 

λ0 in ρ(T ). Formally, we have λI − T = (λ0I − T )[1 + (λ − λ0)(λ0I − T 

)−1], so define 

 

 

 

 

When |λ − λ0| < 1/k(λ0I − T )−1k, there exists some ζ ∈ (0, 1) such that 

k(λ0I − T )−1k|λ − λ0| < 1 − ζ, therefore, this power series converges 

and one can easily check that it converges to (λI − T )−1. Hence the 

above formal expression holds rigorous. For Λ ∈ B(X)0, we have 

 

also converges for λ, |λ − λ0| < 1/k(λ0I − T )−1k. 

(c). We first show that ϕ(λ) → 0 as |λ| → ∞ for any Λ ∈ B(X)0. In this 

time we expand ϕ at ∞. Formally 

 

For λ > ||T||, this can be made rigorously and so 

 

 

 

 

 

 

as |λ| → ∞. 

If ζ(T ) is empty, that means ϕ is an entire function. As it tends to 0 at ∞, 

it is bounded on C. By Lowville theorem we conclude that ϕ is 

identically zero for every Λ ∈ B(X)0. By Hahn-Banach theorem, λI − T = 

0 for all λ, contradiction holds. Hence the spectrum is always non-empty.  
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Define the spectral radius of T ∈ B(X) by 

 

     rT = sup{|λ| : λ ∈ ζ(T )}. 

 

We know that 0 ≤ rT ≤ kTk. We have a precise formula. 

 

Theorem 7.3.3. For any T ∈ B(X) where X is a Banach space, 

 

 

CHECK YOUR PROGRESS 

3. Define Closed Map 

 

 

 

4. State closed graph theorem 

 

 

 

5. State the formula for the “spectral radius” 

 

 

 

7.5 LET’S SUM UP 
 

Unbounded operators play an important role in quantum physics. Unfold 

relationship and how Banach space and the linear operator T bounded. 

The open mapping theorem asserts that a surjective bounded linear 

operator from a Banach space to another Banach space must be an open 

map. This result is uninteresting in the finite dimensional situation, but 

turns out to be very important for infinite dimensional spaces. 
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7.6 KEYWORDS 
 

Resonance points-  The phenomenon of increasing amplitudes of forced 

oscillations when the frequency of the external action approximates one 

of the frequencies of the eigenoscillations (cf. Eigen oscillation) of a 

dynamical system 

Scalar - A quantity all values of which can be expressed by one (real) 

number. More generally, a scalar is an element of some field. 

Regular value-  A scalar λ ∈ F is called a regular value for a bounded 

linear operator T if T − λI is invertible.  

Resolvent set - The set of all regular values of T forms the resolvent set 

of T , denoted by ρ(T ) 

 

7.7 QUESTION FOR REVIEW 
 

1. Prove : - For any T ∈ B(X) where X is a Banach space 

 

 

2. Deduce the open mapping theorem from the closed graph theorem. 

Suggestion: Consider X/N(T ) and the closed map T e given by  ̃( ̃) = T x 

on X/N(T ). 

3.  Let T ∈ B(X) where X is normed. Show that ζ(T ) = ζ(T 0). Hint: 

Show that S is invertible if and only if S' is invertible. 
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7.9 ANSWER TO CHECK YOUR 

PROGRESS 
 

1. Provide statement– 7.1.1 

2. Provide statements  and proof – 7.2.3 

3. Provide statement below corollary --  7.2.3 

4. Provide statement and proof -7.2.4 

5. Refer formula – 7.3.2 

 


